498 research outputs found

    Evaluating humanoid embodied conversational agents in mobile guide applications

    Get PDF
    Evolution in the area of mobile computing has been phenomenal in the last few years. The exploding increase in hardware power has enabled multimodal mobile interfaces to be developed. These interfaces differ from the traditional graphical user interface (GUI), in that they enable a more “natural” communication with mobile devices, through the use of multiple communication channels (e.g., multi-touch, speech recognition, etc.). As a result, a new generation of applications has emerged that provide human-like assistance in the user interface (e.g., the Siri conversational assistant (Siri Inc., visited 2010)). These conversational agents are currently designed to automate a number of tedious mobile tasks (e.g., to call a taxi), but the possible applications are endless. A domain of particular interest is that of Cultural Heritage, where conversational agents can act as personalized tour guides in, for example, archaeological attractions. The visitors to historical places have a diverse range of information needs. For example, casual visitors have different information needs from those with a deeper interest in an attraction (e.g., - holiday learners versus students). A personalized conversational agent can access a cultural heritage database, and effectively translate data into a natural language form that is adapted to the visitor’s personal needs and interests. The present research aims to investigate the information needs of a specific type of visitors, those for whom retention of cultural content is important (e.g., students of history, cultural experts, history hobbyists, educators, etc.). Embodying a conversational agent enables the agent to use additional modalities to communicate this content (e.g., through facial expressions, deictic gestures, etc.) to the user. Simulating the social norms that guide the real-world human-to-human interaction (e.g., adapting the story based on the reactions of the users), should at least theoretically optimize the cognitive accessibility of the content. Although a number of projects have attempted to build embodied conversational agents (ECAs) for cultural heritage, little is known about their impact on the users’ perceived cognitive accessibility of the cultural heritage content, and the usability of the interfaces they support. In particular, there is a general disagreement on the advantages of multimodal ECAs in terms of users’ task performance and satisfaction over nonanthropomorphised interfaces. Further, little is known about what features influence what aspects of the cognitive accessibility of the content and/or usability of the interface. To address these questions I studied the user experiences with ECA interfaces in six user studies across three countries (Greece, UK and USA). To support these studies, I introduced: a) a conceptual framework based on well-established theoretical models of human cognition, and previous frameworks from the literature. The framework offers a holistic view of the design space of ECA systems b) a research technique for evaluating the cognitive accessibility of ECA-based information presentation systems that combine data from eye tracking and facial expression recognition. In addition, I designed a toolkit, from which I partially developed its natural language processing component, to facilitate rapid development of mobile guide applications using ECAs. Results from these studies provide evidence that an ECA, capable of displaying some of the communication strategies (e.g., non-verbal behaviours to accompany linguistic information etc.) found in the real-world human guidance scenario, is not affecting and effective in enhancing the user’s ability to retain cultural content. The findings from the first two studies, suggest than an ECA has no negative/positive impact on users experiencing content that is similar (but not the same) across different locations (see experiment one, in Chapter 7), and content of variable difficulty (see experiment two, in Chapter 7). However, my results also suggest that improving the degree of content personalization and the quality of the modalities used by the ECA can result in both effective and affecting human-ECA interactions. Effectiveness is the degree to which an ECA facilitates a user in accomplishing the navigation and information tasks. Similarly, affecting is the degree to which the ECA changes the quality of the user’s experience while accomplishing the navigation and information tasks. By adhering to the above rules, I gradually improved my designs and built ECAs that are affecting. In particular, I found that an ECA can affect the quality of the user’s navigation experience (see experiment three in Chapter 7), as well as how a user experiences narrations of cultural value (see experiment five, in Chapter 8). In terms of navigation, I found sound evidence that the strongest impact of the ECAs nonverbal behaviours is on the ability of users to correctly disambiguate the navigation of an ECA instructions provided by a tour guide system. However, my ECAs failed to become effective, and to elicit enhanced navigation or retention performances. Given the positive impact of ECAs on the disambiguation of navigation instructions, the lack of ECA-effectiveness in navigation could be attributed to the simulated mobile conditions. In a real outdoor environment, where users would have to actually walk around the castle, an ECA could have elicited better navigation performance, than a system without it. With regards to retention performance, my results suggest that a designer should not solely consider the impact of an ECA, but also the style and effectiveness of the question-answering (Q&A) with the ECA, and the type of user interacting with the ECA (see experiments four and six, in Chapter 8). I found that that there is a correlation between how many questions participants asked per location for a tour, and the information they retained after the completion of the tour. When participants were requested to ask the systems a specific number of questions per location, they could retain more information than when they were allowed to freely ask questions. However, the constrained style of interaction decreased their overall satisfaction with the systems. Therefore, when enhanced retention performance is needed, a designer should consider strategies that should direct users to ask a specific number of questions per location for a tour. On the other hand, when maintaining the positive levels of user experiences is the desired outcome of an interaction, users should be allowed to freely ask questions. Then, the effectiveness of the Q&A session is of importance to the success/failure of the user’s interaction with the ECA. In a natural-language question-answering system, the system often fails to understand the user’s question and, by default, it asks the user to rephrase again. A problem arises when the system fails to understand a question repeatedly. I found that a repetitive request to rephrase the same question annoys participants and affects their retention performance. Therefore, in order to ensure effective human-ECA Q&A, the repeat messages should be built in a way to allow users to figure out how to ask the system questions to avoid improper responses. Then, I found strong evidence that an ECA may be effective for some type of users, while for some others it may be not. I found that an ECA with an attention-grabbing mechanism (see experiment six, in Chapter 8), had an inverse effect on the retention performance of participants with different gender. In particular, it enhanced the retention performance of the male participants, while it degraded the retention performance of the female participants. Finally, a series of tentative design recommendations for the design of both affecting and effective ECAs in mobile guide applications in derived from the work undertaken. These are aimed at ECA researchers and mobile guide designers

    Multimodal agents for cooperative interaction

    Get PDF
    2020 Fall.Includes bibliographical references.Embodied virtual agents offer the potential to interact with a computer in a more natural manner, similar to how we interact with other people. To reach this potential requires multimodal interaction, including both speech and gesture. This project builds on earlier work at Colorado State University and Brandeis University on just such a multimodal system, referred to as Diana. I designed and developed a new software architecture to directly address some of the difficulties of the earlier system, particularly with regard to asynchronous communication, e.g., interrupting the agent after it has begun to act. Various other enhancements were made to the agent systems, including the model itself, as well as speech recognition, speech synthesis, motor control, and gaze control. Further refactoring and new code were developed to achieve software engineering goals that are not outwardly visible, but no less important: decoupling, testability, improved networking, and independence from a particular agent model. This work, combined with the effort of others in the lab, has produced a "version 2'' Diana system that is well positioned to serve the lab's research needs in the future. In addition, in order to pursue new research opportunities related to developmental and intervention science, a "Faelyn Fox'' agent was developed. This is a different model, with a simplified cognitive architecture, and a system for defining an experimental protocol (for example, a toy-sorting task) based on Unity's visual state machine editor. This version too lays a solid foundation for future research

    Smart tourist information points by combining agents, semantics and AI techniques

    Get PDF
    The tourism sector in the province of Teruel (Aragon, Spain) is increasing rapidly. Although the number of domestic and foreign tourists is continuously growing, there are some tourist attractions spread over a wide geographical area, which are only visited by a few people at specific times of the year. Additionally, having human tourist guides everywhere and speaking different languages is unfeasible. An integrated solution based on smart and interactive Embodied Conversational Agents (ECAs) tourist guides combined with ontologies would overcome this problem. This paper presents a smart tourist information points approach which gathers tourism information about Teruel, structured according to a novel lightweight ontology built on OWL (Ontology Web Language), known as TITERIA (Touristic Information of TEruel for Intelligent Agents). Our proposal, which combines TITERIA with the Maxine platform, is capable of responding appropriately to the users thanks to its Artificial Intelligence Modeling Language (AIML) database and the AI techniques added to Maxine. Preliminary results indicate that our prototype is able to inform users about interesting topics, as well as to propose other related information, allowing them to acquire a complete information about any issue. Furthermore, users can directly talk with an artificial actor making communication much more natural and closer

    Robust Dialog Management Through A Context-centric Architecture

    Get PDF
    This dissertation presents and evaluates a method of managing spoken dialog interactions with a robust attention to fulfilling the human user’s goals in the presence of speech recognition limitations. Assistive speech-based embodied conversation agents are computer-based entities that interact with humans to help accomplish a certain task or communicate information via spoken input and output. A challenging aspect of this task involves open dialog, where the user is free to converse in an unstructured manner. With this style of input, the machine’s ability to communicate may be hindered by poor reception of utterances, caused by a user’s inadequate command of a language and/or faults in the speech recognition facilities. Since a speech-based input is emphasized, this endeavor involves the fundamental issues associated with natural language processing, automatic speech recognition and dialog system design. Driven by ContextBased Reasoning, the presented dialog manager features a discourse model that implements mixed-initiative conversation with a focus on the user’s assistive needs. The discourse behavior must maintain a sense of generality, where the assistive nature of the system remains constant regardless of its knowledge corpus. The dialog manager was encapsulated into a speech-based embodied conversation agent platform for prototyping and testing purposes. A battery of user trials was performed on this agent to evaluate its performance as a robust, domain-independent, speech-based interaction entity capable of satisfying the needs of its users
    corecore