7 research outputs found

    Ontology-based data integration between clinical and research systems

    Get PDF
    Data from the electronic medical record comprise numerous structured but uncoded elements, which are not linked to standard terminologies. Reuse of such data for secondary research purposes has gained in importance recently. However, the identification of relevant data elements and the creation of database jobs for extraction, transformation and loading (ETL) are challenging: With current methods such as data warehousing, it is not feasible to efficiently maintain and reuse semantically complex data extraction and trans-formation routines. We present an ontology-supported approach to overcome this challenge by making use of abstraction: Instead of defining ETL procedures at the database level, we use ontologies to organize and describe the medical concepts of both the source system and the target system. Instead of using unique, specifically developed SQL statements or ETL jobs, we define declarative transformation rules within ontologies and illustrate how these constructs can then be used to automatically generate SQL code to perform the desired ETL procedures. This demonstrates how a suitable level of abstraction may not only aid the interpretation of clinical data, but can also foster the reutilization of methods for un-locking it

    Clinical decision support: Knowledge representation and uncertainty management

    Get PDF
    Programa Doutoral em Engenharia BiomédicaDecision-making in clinical practice is faced with many challenges due to the inherent risks of being a health care professional. From medical error to undesired variations in clinical practice, the mitigation of these issues seems to be tightly connected to the adherence to Clinical Practice Guidelines as evidence-based recommendations The deployment of Clinical Practice Guidelines in computational systems for clinical decision support has the potential to positively impact health care. However, current approaches to Computer-Interpretable Guidelines evidence a set of issues that leave them wanting. These issues are related with the lack of expressiveness of their underlying models, the complexity of knowledge acquisition with their tools, the absence of support to the clinical decision making process, and the style of communication of Clinical Decision Support Systems implementing Computer-Interpretable Guidelines. Such issues pose as obstacles that prevent these systems from showing properties like modularity, flexibility, adaptability, and interactivity. All these properties reflect the concept of living guidelines. The purpose of this doctoral thesis is, thus, to provide a framework that enables the expression of these properties. The modularity property is conferred by the ontological definition of Computer-Interpretable Guidelines and the assistance in guideline acquisition provided by an editing tool, allowing for the management of multiple knowledge patterns that can be reused. Flexibility is provided by the representation primitives defined in the ontology, meaning that the model is adjustable to guidelines from different categories and specialities. On to adaptability, this property is conferred by mechanisms of Speculative Computation, which allow the Decision Support System to not only reason with incomplete information but to adapt to changes of state, such as suddenly knowing the missing information. The solution proposed for interactivity consists in embedding Computer-Interpretable Guideline advice directly into the daily life of health care professionals and provide a set of reminders and notifications that help them to keep track of their tasks and responsibilities. All these solutions make the CompGuide framework for the expression of Clinical Decision Support Systems based on Computer-Interpretable Guidelines.A tomada de decisão na prática clínica enfrenta inúmeros desafios devido aos riscos inerentes a ser um profissional de saúde. Desde o erro medico até às variações indesejadas da prática clínica, a atenuação destes problemas parece estar intimamente ligada à adesão a Protocolos Clínicos, uma vez que estes são recomendações baseadas na evidencia. A operacionalização de Protocolos Clínicos em sistemas computacionais para apoio à decisão clínica apresenta o potencial de ter um impacto positivo nos cuidados de saúde. Contudo, as abordagens atuais a Protocolos Clínicos Interpretáveis por Maquinas evidenciam um conjunto de problemas que as deixa a desejar. Estes problemas estão relacionados com a falta de expressividade dos modelos que lhes estão subjacentes, a complexidade da aquisição de conhecimento utilizando as suas ferramentas, a ausência de suporte ao processo de decisão clínica e o estilo de comunicação dos Sistemas de Apoio à Decisão Clínica que implementam Protocolos Clínicos Interpretáveis por Maquinas. Tais problemas constituem obstáculos que impedem estes sistemas de apresentarem propriedades como modularidade, flexibilidade, adaptabilidade e interatividade. Todas estas propriedades refletem o conceito de living guidelines. O propósito desta tese de doutoramento é, portanto, o de fornecer uma estrutura que possibilite a expressão destas propriedades. A modularidade é conferida pela definição ontológica dos Protocolos Clínicos Interpretáveis por Maquinas e pela assistência na aquisição de protocolos fornecida por uma ferramenta de edição, permitindo assim a gestão de múltiplos padrões de conhecimento que podem ser reutilizados. A flexibilidade é atribuída pelas primitivas de representação definidas na ontologia, o que significa que o modelo é ajustável a protocolos de diferentes categorias e especialidades. Quanto à adaptabilidade, esta é conferida por mecanismos de Computação Especulativa que permitem ao Sistema de Apoio à Decisão não só raciocinar com informação incompleta, mas também adaptar-se a mudanças de estado, como subitamente tomar conhecimento da informação em falta. A solução proposta para a interatividade consiste em incorporar as recomendações dos Protocolos Clínicos Interpretáveis por Maquinas diretamente no dia a dia dos profissionais de saúde e fornecer um conjunto de lembretes e notificações que os auxiliam a rastrear as suas tarefas e responsabilidades. Todas estas soluções constituem a estrutura CompGuide para a expressão de Sistemas de Apoio à Decisão Clínica baseados em Protocolos Clínicos Interpretáveis por Máquinas.The work of the PhD candidate Tiago José Martins Oliveira is supported by a grant from FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) with the reference SFRH/BD/85291/ 2012

    MuCIGREF: multiple computer-interpretable guideline representation and execution framework for managing multimobidity care

    Get PDF
    Clinical Practice Guidelines (CPGs) supply evidence-based recommendations to healthcare professionals (HCPs) for the care of patients. Their use in clinical practice has many benefits for patients, HCPs and treating medical centres, such as enhancing the quality of care, and reducing unwanted care variations. However, there are many challenges limiting their implementations. Initially, CPGs predominantly consider a specific disease, and only few of them refer to multimorbidity (i.e. the presence of two or more health conditions in an individual) and they are not able to adapt to dynamic changes in patient health conditions. The manual management of guideline recommendations are also challenging since recommendations may adversely interact with each other due to their competing targets and/or they can be duplicated when multiple of them are concurrently applied to a multimorbid patient. These may result in undesired outcomes such as severe disability, increased hospitalisation costs and many others. Formalisation of CPGs into a Computer Interpretable Guideline (CIG) format, allows the guidelines to be interpreted and processed by computer applications, such as Clinical Decision Support Systems (CDSS). This enables provision of automated support to manage the limitations of guidelines. This thesis introduces a new approach for the problem of combining multiple concurrently implemented CIGs and their interrelations to manage multimorbidity care. MuCIGREF (Multiple Computer-Interpretable Guideline Representation and Execution Framework), is proposed whose specific objectives are to present (1) a novel multiple CIG representation language, MuCRL, where a generic ontology is developed to represent knowledge elements of CPGs and their interrelations, and to create the multimorbidity related associations between them. A systematic literature review is conducted to discover CPG representation requirements and gaps in multimorbidity care management. The ontology is built based on the synthesis of well-known ontology building lifecycle methodologies. Afterwards, the ontology is transformed to a metamodel to support the CIG execution phase; and (2) a novel real-time multiple CIG execution engine, MuCEE, where CIG models are dynamically combined to generate consistent and personalised care plans for multimorbid patients. MuCEE involves three modules as (i) CIG acquisition module, transfers CIGs to the personal care plan based on the patient’s health conditions and to supply CIG version control; (ii) parallel CIG execution module, combines concurrently implemented multiple CIGs by performing concurrency management, time-based synchronisation (e.g., multi-activity merging), modification, and timebased optimisation of clinical activities; and (iii) CIG verification module, checks missing information, and inconsistencies to support CIG execution phases. Rulebased execution algorithms are presented for each module. Afterwards, a set of verification and validation analyses are performed involving real-world multimorbidity cases studies and comparative analyses with existing works. The results show that the proposed framework can combine multiple CIGs and dynamically merge, optimise and modify multiple clinical activities of them involving patient data. This framework can be used to support HCPs in a CDSS setting to generate unified and personalised care recommendations for multimorbid patients while merging multiple guideline actions and eliminating care duplications to maintain their safety and supplying optimised health resource management, which may improve operational and cost efficiency in real world-cases, as well

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Preface

    Get PDF
    corecore