21,174 research outputs found

    What Does Aspect-Oriented Programming Mean for Functional Programmers?

    Get PDF
    Aspect-Oriented Programming (AOP) aims at modularising crosscutting concerns that show up in software. The success of AOP has been almost viral and nearly all areas in Software Engineering and Programming Languages have become "infected" by the AOP bug in one way or another. Interestingly the functional programming community (and, in particular, the pure functional programming community) seems to be resistant to the pandemic. The goal of this paper is to debate the possible causes of the functional programming community's resistance and to raise awareness and interest by showcasing the benefits that could be gained from having a functional AOP language. At the same time, we identify the main challenges and explore the possible design-space

    Transfer learning approach for financial applications

    Full text link
    Artificial neural networks learn how to solve new problems through a computationally intense and time consuming process. One way to reduce the amount of time required is to inject preexisting knowledge into the network. To make use of past knowledge, we can take advantage of techniques that transfer the knowledge learned from one task, and reuse it on another (sometimes unrelated) task. In this paper we propose a novel selective breeding technique that extends the transfer learning with behavioural genetics approach proposed by Kohli, Magoulas and Thomas (2013), and evaluate its performance on financial data. Numerical evidence demonstrates the credibility of the new approach. We provide insights on the operation of transfer learning and highlight the benefits of using behavioural principles and selective breeding when tackling a set of diverse financial applications problems

    Set-Theoretic Types for Polymorphic Variants

    Get PDF
    Polymorphic variants are a useful feature of the OCaml language whose current definition and implementation rely on kinding constraints to simulate a subtyping relation via unification. This yields an awkward formalization and results in a type system whose behaviour is in some cases unintuitive and/or unduly restrictive. In this work, we present an alternative formalization of poly-morphic variants, based on set-theoretic types and subtyping, that yields a cleaner and more streamlined system. Our formalization is more expressive than the current one (it types more programs while preserving type safety), it can internalize some meta-theoretic properties, and it removes some pathological cases of the current implementation resulting in a more intuitive and, thus, predictable type system. More generally, this work shows how to add full-fledged union types to functional languages of the ML family that usually rely on the Hindley-Milner type system. As an aside, our system also improves the theory of semantic subtyping, notably by proving completeness for the type reconstruction algorithm.Comment: ACM SIGPLAN International Conference on Functional Programming, Sep 2016, Nara, Japan. ICFP 16, 21st ACM SIGPLAN International Conference on Functional Programming, 201
    • …
    corecore