8,263 research outputs found

    Nondispersive solutions to the L2-critical half-wave equation

    Get PDF
    We consider the focusing L2L^2-critical half-wave equation in one space dimension itu=Duu2u, i \partial_t u = D u - |u|^2 u, where DD denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M>0M_* > 0 such that all H1/2H^{1/2} solutions with uL2<M\| u \|_{L^2} < M_* extend globally in time, while solutions with uL2M\| u \|_{L^2} \geq M_* may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass u0L2=M\| u_0 \|_{L^2} = M_*. More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E0>0E_0 >0 and the linear momentum P0RP_0 \in \R. In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L2L^2-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page

    Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data

    Full text link
    We consider the one-dimensional focusing nonlinear Schr\"odinger equation (NLS) with a delta potential and even initial data. The problem is equivalent to the solution of the initial/boundary problem for NLS on a half-line with Robin boundary conditions at the origin. We follow the method of Bikbaev and Tarasov which utilizes a B\"acklund transformation to extend the solution on the half-line to a solution of the NLS equation on the whole line. We study the asymptotic stability of the stationary 1-soliton solution of the equation under perturbation by applying the nonlinear steepest-descent method for Riemann-Hilbert problems introduced by Deift and Zhou. Our work strengthens, and extends, earlier work on the problem by Holmer and Zworski

    Fourth-Order Algorithms for Solving the Imaginary Time Gross-Pitaevskii Equation in a Rotating Anisotropic Trap

    Get PDF
    By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth order algorithms are possible only with the use of {\it forward}, positive time step factorization schemes. These fourth order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.Comment: 14 pages with 3 figures, revised figures with the use of the Lambert W-function for doing the self-consistent iterations. Published versio

    A moment-equation-copula-closure method for nonlinear vibrational systems subjected to correlated noise

    Get PDF
    We develop a moment equation closure minimization method for the inexpensive approximation of the steady state statistical structure of nonlinear systems whose potential functions have bimodal shapes and which are subjected to correlated excitations. Our approach relies on the derivation of moment equations that describe the dynamics governing the two-time statistics. These are combined with a non-Gaussian pdf representation for the joint response-excitation statistics that has i) single time statistical structure consistent with the analytical solutions of the Fokker-Planck equation, and ii) two-time statistical structure with Gaussian characteristics. Through the adopted pdf representation, we derive a closure scheme which we formulate in terms of a consistency condition involving the second order statistics of the response, the closure constraint. A similar condition, the dynamics constraint, is also derived directly through the moment equations. These two constraints are formulated as a low-dimensional minimization problem with respect to unknown parameters of the representation, the minimization of which imposes an interplay between the dynamics and the adopted closure. The new method allows for the semi-analytical representation of the two-time, non-Gaussian structure of the solution as well as the joint statistical structure of the response-excitation over different time instants. We demonstrate its effectiveness through the application on bistable nonlinear single-degree-of-freedom energy harvesters with mechanical and electromagnetic damping, and we show that the results compare favorably with direct Monte-Carlo Simulations

    A consistent description of kinetics and hydrodynamics of systems of interacting particles by means of the nonequilibrium statistical operator method

    Get PDF
    A statistical approach to a self-consistent description of kinetic and hydrodynamic processes in systems of interacting particles is formulated on the basis of the nonequilibrium statistical operator method by D.N.Zubarev. It is shown how to obtain the kinetic equation of the revised Enskog theory for a hard sphere model, the kinetic equations for multistep potentials of interaction and the Enskog-Landau kinetic equation for a system of charged hard spheres. The BBGKY hierarchy is analyzed on the basis of modified group expansions. Generalized transport equations are obtained in view of a self-consistent description of kinetics and hydrodynamics. Time correlation functions, spectra of collective excitations and generalized transport coefficients are investigated in the case of weakly nonequilibrium systems of interacting particles.Comment: 64 LaTeX2e pages, 1 figure, special sty-files, additional font
    corecore