1,627 research outputs found

    Performance Analysis of Heterogeneous Feedback Design in an OFDMA Downlink with Partial and Imperfect Feedback

    Full text link
    Current OFDMA systems group resource blocks into subband to form the basic feedback unit. Homogeneous feedback design with a common subband size is not aware of the heterogeneous channel statistics among users. Under a general correlated channel model, we demonstrate the gain of matching the subband size to the underlying channel statistics motivating heterogeneous feedback design with different subband sizes and feedback resources across clusters of users. Employing the best-M partial feedback strategy, users with smaller subband size would convey more partial feedback to match the frequency selectivity. In order to develop an analytical framework to investigate the impact of partial feedback and potential imperfections, we leverage the multi-cluster subband fading model. The perfect feedback scenario is thoroughly analyzed, and the closed form expression for the average sum rate is derived for the heterogeneous partial feedback system. We proceed to examine the effect of imperfections due to channel estimation error and feedback delay, which leads to additional consideration of system outage. Two transmission strategies: the fix rate and the variable rate, are considered for the outage analysis. We also investigate how to adapt to the imperfections in order to maximize the average goodput under heterogeneous partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    System level evaluation of interference in vehicular mobile broadband networks

    Get PDF

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Demo: Non-classic Interference Alignment for Downlink Cellular Networks

    Get PDF
    Our demo aims at proving the concept of a recent proposed interference management scheme that reduces the inter-cell interference in downlink without complex coordination, known as non-classic interference alignment (IA) scheme. We assume a case where one main Base Station (BS) needs to serve three users equipments (UE) while another BS is causing interference. The primary goal is to construct the alignment scheme ; i.e. each UE estimates the main and interfered channel coefficients, calculates the optimal interference free directions dropped by the interfering BS and feeds them back to the main BS which in turn applies a scheduling to select the best free inter-cell interference directions. Once the scheme is build, we are able to measure the total capacity of the downlink interference channel. We run the scheme in CorteXlab ; a controlled hardware facility located in Lyon, France with remotely programmable radios and multi-node processing capabilities, and we illustrate the achievable capacity gain for different channel realizations.Comment: Joint NEWCOM/COST Workshop on Wireless Communications JNCW 2015, Oct 2015, Barcelone, Spain. 201
    • …
    corecore