10,197 research outputs found

    Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

    Get PDF
    The wide deployment of tokens for digital assets on top of Ethereum implies the need for powerful trading platforms. Vickrey auctions have been known to determine the real market price of items as bidders are motivated to submit their own monetary valuations without leaking their information to the competitors. Recent constructions have utilized various cryptographic protocols such as ZKP and MPC, however, these approaches either are partially privacy-preserving or require complex computations with several rounds. In this paper, we overcome these limits by presenting Trustee as a Vickrey auction on Ethereum which fully preserves bids' privacy at relatively much lower fees. Trustee consists of three components: a front-end smart contract deployed on Ethereum, an Intel SGX enclave, and a relay to redirect messages between them. Initially, the enclave generates an Ethereum account and ECDH key-pair. Subsequently, the relay publishes the account's address and ECDH public key on the smart contract. As a prerequisite, bidders are encouraged to verify the authenticity and security of Trustee by using the SGX remote attestation service. To participate in the auction, bidders utilize the ECDH public key to encrypt their bids and submit them to the smart contract. Once the bidding interval is closed, the relay retrieves the encrypted bids and feeds them to the enclave that autonomously generates a signed transaction indicating the auction winner. Finally, the relay submits the transaction to the smart contract which verifies the transaction's authenticity and the parameters' consistency before accepting the claimed auction winner. As part of our contributions, we have made a prototype for Trustee available on Github for the community to review and inspect it. Additionally, we analyze the security features of Trustee and report on the transactions' gas cost incurred on Trustee smart contract.Comment: Presented at Financial Cryptography and Data Security 2019, 3rd Workshop on Trusted Smart Contract

    Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization

    Full text link
    Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science. Practitioners often optimize over a parameterized algorithm family, tuning parameters based on problems from their domain. These procedures have historically come with no guarantees, though a recent line of work studies algorithm selection from a theoretical perspective. We advance the foundations of this field in several directions: we analyze online algorithm selection, where problems arrive one-by-one and the goal is to minimize regret, and private algorithm selection, where the goal is to find good parameters over a set of problems without revealing sensitive information contained therein. We study important algorithm families, including SDP-rounding schemes for problems formulated as integer quadratic programs, and greedy techniques for canonical subset selection problems. In these cases, the algorithm's performance is a volatile and piecewise Lipschitz function of its parameters, since tweaking the parameters can completely change the algorithm's behavior. We give a sufficient and general condition, dispersion, defining a family of piecewise Lipschitz functions that can be optimized online and privately, which includes the functions measuring the performance of the algorithms we study. Intuitively, a set of piecewise Lipschitz functions is dispersed if no small region contains many of the functions' discontinuities. We present general techniques for online and private optimization of the sum of dispersed piecewise Lipschitz functions. We improve over the best-known regret bounds for a variety of problems, prove regret bounds for problems not previously studied, and give matching lower bounds. We also give matching upper and lower bounds on the utility loss due to privacy. Moreover, we uncover dispersion in auction design and pricing problems

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    Information in Mechanism Design

    Get PDF
    We survey the recent literature on the role of information for mechanism design. We specifically consider the role of endogeneity of and robustness to private information in mechanism design. We view information acquisition of and robustness to private information as two distinct but related aspects of information management important in many design settings. We review the existing literature and point out directions for additional future work.Mechanism Design, Information Acquisition, Ex Post Equilibrium, Robust Mechanism Design, Interdependent Values, Information Management
    • …
    corecore