3,509 research outputs found

    Customizing BPMN Diagrams Using Timelines

    Get PDF
    BPMN (Business Process Model and Notation) is widely used standard modeling technique for representing Business Processes by using diagrams, but lacks in some aspects. Representing execution-dependent and time-dependent decisions in BPMN Diagrams may be a daunting challenge [Carlo Combi et al., 2017]. In many cases such constraints are omitted in order to preserve the simplicity and the readability of the process model. However, for purposes such as compliance checking, process mining, and verification, formalizing such constraints could be very useful. In this paper, we propose a novel approach for annotating BPMN Diagrams with Temporal Synchronization Rules borrowed from the timeline-based planning field. We discuss the expressivity of the proposed approach and show that it is able to capture a lot of complex temporally-related constraints without affecting the structure of BPMN diagrams. Finally, we provide a mapping from annotated BPMN diagrams to timeline-based planning problems that allows one to take advantage of the last twenty years of theoretical and practical developments in the field

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Robots in Retirement Homes: Applying Off-the-Shelf Planning and Scheduling to a Team of Assistive Robots

    Get PDF
    This paper investigates three different technologies for solving a planning and scheduling problem of deploying multiple robots in a retirement home environment to assist elderly residents. The models proposed make use of standard techniques and solvers developed in AI planning and scheduling, with two primary motivations. First, to find a planning and scheduling solution that we can deploy in our real-world application. Second, to evaluate planning and scheduling technology in terms of the ``model-and-solve'' functionality that forms a major research goal in both domain-independent planning and constraint programming. Seven variations of our application are studied using the following three technologies: PDDL-based planning, time-line planning and scheduling, and constraint-based scheduling. The variations address specific aspects of the problem that we believe can impact the performance of the technologies while also representing reasonable abstractions of the real world application. We evaluate the capabilities of each technology and conclude that a constraint-based scheduling approach, specifically a decomposition using constraint programming, provides the most promising results for our application. PDDL-based planning is able to find mostly low quality solutions while the timeline approach was unable to model the full problem without alterations to the solver code, thus moving away from the model-and-solve paradigm. It would be misleading to conclude that constraint programming is ``better'' than PDDL-based planning in a general sense, both because we have examined a single application and because the approaches make different assumptions about the knowledge one is allowed to embed in a model. Nonetheless, we believe our investigation is valuable for AI planning and scheduling researchers as it highlights these different modelling assumptions and provides insight into avenues for the application of AI planning and scheduling for similar robotics problems. In particular, as constraint programming has not been widely applied to robot planning and scheduling in the literature, our results suggest significant untapped potential in doing so.California Institute of Technology. Keck Institute for Space Studie

    Enriching APSI with Validation Capabilities: the KEEN environment and its use in Robotics

    Get PDF
    This paper presents the KnowledgE ENgineering (KEEN) design support system in which Validation and Verification (V&V) methods are used to strengthen onground development of software for plan-based autonomy. In particular, the paper describes a collection of verification methods, based on Timed Game Automata (TGA), deployed for the design and development of timeline-based Planning and Scheduling (P&S) applications within the APSI-TRF framework. The KEENs V&V functionalities are illustrated describing software development to synthesize plans for a planetary rover

    A Knowledge Engineering Environment for P&S with Timelines

    Get PDF
    This paper presents some of the features of a knowledge engineering environment, called KEE N, created to support a timeline based planning based on the A PSI-T RF modeling assumptions. A key feature of the environment is the integration of typical tools for knowledge based modeling and refining with services for validation and verification specialized to planning with timelines

    A TGA-based Method for Safety Critical Plan Execution

    Get PDF
    Safety critical planning and execution is a crucial issue in autonomous systems. This paper proposes a methodology for controller synthesis suitable for timeline-based planning and demonstrates its effectiveness in a space domain where robustness of execution is a crucial property. The proposed approach uses Timed Game Automata (TGA) for formal modeling and the UPPAAL-TIGA model checker for controllers synthesis. An experimental evaluation is performed using a real-world control system

    Strategies for automatic planning: A collection of ideas

    Get PDF
    The main goal of the Jet Propulsion Laboratory (JPL) is to obtain science return from interplanetary probes. The uplink process is concerned with communicating commands to a spacecraft in order to achieve science objectives. There are two main parts to the development of the command file which is sent to a spacecraft. First, the activity planning process integrates the science requests for utilization of spacecraft time into a feasible sequence. Then the command generation process converts the sequence into a set of commands. The development of a feasible sequence plan is an expensive and labor intensive process requiring many months of effort. In order to save time and manpower in the uplink process, automation of parts of this process is desired. There is an ongoing effort to develop automatic planning systems. This has met with some success, but has also been informative about the nature of this effort. It is now clear that innovative techniques and state-of-the-art technology will be required in order to produce a system which can provide automatic sequence planning. As part of this effort to develop automatic planning systems, a survey of the literature, looking for known techniques which may be applicable to our work was conducted. Descriptions of and references for these methods are given, together with ideas for applying the techniques to automatic planning

    A Game-Theoretic Approach to Timeline-Based Planning with Uncertainty

    Get PDF
    In timeline-based planning, domains are described as sets of independent, but interacting, components, whose behaviour over time (the set of timelines) is governed by a set of temporal constraints. A distinguishing feature of timeline-based planning systems is the ability to integrate planning with execution by synthesising control strategies for flexible plans. However, flexible plans can only represent temporal uncertainty, while more complex forms of nondeterminism are needed to deal with a wider range of realistic problems. In this paper, we propose a novel game-theoretic approach to timeline-based planning problems, generalising the state of the art while uniformly handling temporal uncertainty and nondeterminism. We define a general concept of timeline-based game and we show that the notion of winning strategy for these games is strictly more general than that of control strategy for dynamically controllable flexible plans. Moreover, we show that the problem of establishing the existence of such winning strategies is decidable using a doubly exponential amount of space
    • …
    corecore