180,245 research outputs found

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Trust Evaluation for Embedded Systems Security research challenges identified from an incident network scenario

    Get PDF
    This paper is about trust establishment and trust evaluations techniques. A short background about trust, trusted computing and security in embedded systems is given. An analysis has been done of an incident network scenario with roaming users and a set of basic security needs has been identified. These needs have been used to derive security requirements for devices and systems, supporting the considered scenario. Using the requirements, a list of major security challenges for future research regarding trust establishment in dynamic networks have been collected and elaboration on some different approaches for future research has been done.This work was supported by the Knowledge foundation and RISE within the ARIES project

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    ADsafety: Type-Based Verification of JavaScript Sandboxing

    Full text link
    Web sites routinely incorporate JavaScript programs from several sources into a single page. These sources must be protected from one another, which requires robust sandboxing. The many entry-points of sandboxes and the subtleties of JavaScript demand robust verification of the actual sandbox source. We use a novel type system for JavaScript to encode and verify sandboxing properties. The resulting verifier is lightweight and efficient, and operates on actual source. We demonstrate the effectiveness of our technique by applying it to ADsafe, which revealed several bugs and other weaknesses.Comment: in Proceedings of the USENIX Security Symposium (2011
    • …
    corecore