14,388 research outputs found

    Gossip-based service monitoring platform for wireless edge cloud computing

    Get PDF
    Edge cloud computing proposes to support shared services, by using the infrastructure at the network's edge. An important problem is the monitoring and management of services across the edge environment. Therefore, dissemination and gathering of data is not straightforward, differing from the classic cloud infrastructure. In this paper, we consider the environment of community networks for edge cloud computing, in which the monitoring of cloud services is required. We propose a monitoring platform to collect near real-time data about the services offered in the community network using a gossip-enabled network. We analyze and apply this gossip-enabled network to perform service discovery and information sharing, enabling data dissemination among the community. We implemented our solution as a prototype and used it for collecting service monitoring data from the real operational community network cloud, as a feasible deployment of our solution. By means of emulation and simulation we analyze in different scenarios, the behavior of the gossip overlay solution, and obtain average results regarding information propagation and consistency needs, i.e. in high latency situations, data convergence occurs within minutes.Peer ReviewedPostprint (author's final draft

    Applying Formal Methods to Gossiping Networks with mCRL and Groove

    Get PDF
    In this paper we explore the practical possibilities of using formal methods to analyze gossiping networks. In particular, we use mCRL and Groove to model the peer sampling service, and analyze it through a series of model transformations to CTMCs and finally MRMs. Our tools compute the expected value of various network quality indicators, such as average path lengths, over all possible system runs. Both transient and steady state analysis are supported. We compare our results with the simulation and emulation results found in [10]

    Converging an Overlay Network to a Gradient Topology

    Get PDF
    In this paper, we investigate the topology convergence problem for the gossip-based Gradient overlay network. In an overlay network where each node has a local utility value, a Gradient overlay network is characterized by the properties that each node has a set of neighbors with the same utility value (a similar view) and a set of neighbors containing higher utility values (gradient neighbor set), such that paths of increasing utilities emerge in the network topology. The Gradient overlay network is built using gossiping and a preference function that samples from nodes using a uniform random peer sampling service. We analyze it using tools from matrix analysis, and we prove both the necessary and sufficient conditions for convergence to a complete gradient structure, as well as estimating the convergence time and providing bounds on worst-case convergence time. Finally, we show in simulations the potential of the Gradient overlay, by building a more efficient live-streaming peer-to-peer (P2P) system than one built using uniform random peer sampling.Comment: Submitted to 50th IEEE Conference on Decision and Control (CDC 2011

    The Development and Failure of Social Norms in Second Life

    Get PDF
    This Note analyzes the development and efficacy of social norms in maximizing the welfare of participants in the virtual community of Second Life. Although some of these norms developed appropriately in response to the objectives and purposes of this virtual world, Second Life is so thoroughly steeped in conditions that have impeded the development of successful social norms in other communities that any system of social norms in Second Life will ultimately fail. Because social norms will likely,fail to successfully maximize resident welfare, regulatory schemes imposed both by the operators of the virtual world and by real-world governing institutions are needed to enhance the functioning of this particular alternative reality inhabited by millions

    The Development and Failure of Social Norms in Second Life

    Get PDF
    This Note analyzes the development and efficacy of social norms in maximizing the welfare of participants in the virtual community of Second Life. Although some of these norms developed appropriately in response to the objectives and purposes of this virtual world, Second Life is so thoroughly steeped in conditions that have impeded the development of successful social norms in other communities that any system of social norms in Second Life will ultimately fail. Because social norms will likely,fail to successfully maximize resident welfare, regulatory schemes imposed both by the operators of the virtual world and by real-world governing institutions are needed to enhance the functioning of this particular alternative reality inhabited by millions

    Semantic Query Reformulation in Social PDMS

    Full text link
    We consider social peer-to-peer data management systems (PDMS), where each peer maintains both semantic mappings between its schema and some acquaintances, and social links with peer friends. In this context, reformulating a query from a peer's schema into other peer's schemas is a hard problem, as it may generate as many rewritings as the set of mappings from that peer to the outside and transitively on, by eventually traversing the entire network. However, not all the obtained rewritings are relevant to a given query. In this paper, we address this problem by inspecting semantic mappings and social links to find only relevant rewritings. We propose a new notion of 'relevance' of a query with respect to a mapping, and, based on this notion, a new semantic query reformulation approach for social PDMS, which achieves great accuracy and flexibility. To find rapidly the most interesting mappings, we combine several techniques: (i) social links are expressed as FOAF (Friend of a Friend) links to characterize peer's friendship and compact mapping summaries are used to obtain mapping descriptions; (ii) local semantic views are special views that contain information about external mappings; and (iii) gossiping techniques improve the search of relevant mappings. Our experimental evaluation, based on a prototype on top of PeerSim and a simulated network demonstrate that our solution yields greater recall, compared to traditional query translation approaches proposed in the literature.Comment: 29 pages, 8 figures, query rewriting in PDM

    On the Role of Mobility for Multi-message Gossip

    Full text link
    We consider information dissemination in a large nn-user wireless network in which kk users wish to share a unique message with all other users. Each of the nn users only has knowledge of its own contents and state information; this corresponds to a one-sided push-only scenario. The goal is to disseminate all messages efficiently, hopefully achieving an order-optimal spreading rate over unicast wireless random networks. First, we show that a random-push strategy -- where a user sends its own or a received packet at random -- is order-wise suboptimal in a random geometric graph: specifically, Ω(n)\Omega(\sqrt{n}) times slower than optimal spreading. It is known that this gap can be closed if each user has "full" mobility, since this effectively creates a complete graph. We instead consider velocity-constrained mobility where at each time slot the user moves locally using a discrete random walk with velocity v(n)v(n) that is much lower than full mobility. We propose a simple two-stage dissemination strategy that alternates between individual message flooding ("self promotion") and random gossiping. We prove that this scheme achieves a close to optimal spreading rate (within only a logarithmic gap) as long as the velocity is at least v(n)=ω(logn/k)v(n)=\omega(\sqrt{\log n/k}). The key insight is that the mixing property introduced by the partial mobility helps users to spread in space within a relatively short period compared to the optimal spreading time, which macroscopically mimics message dissemination over a complete graph.Comment: accepted to IEEE Transactions on Information Theory, 201
    corecore