3,235 research outputs found

    Towards improving web service repositories through semantic web techniques

    Get PDF
    The success of the Web services technology has brought topicsas software reuse and discovery once again on the agenda of software engineers. While there are several efforts towards automating Web service discovery and composition, many developers still search for services via online Web service repositories and then combine them manually. However, from our analysis of these repositories, it yields that, unlike traditional software libraries, they rely on little metadata to support service discovery. We believe that the major cause is the difficulty of automatically deriving metadata that would describe rapidly changing Web service collections. In this paper, we discuss the major shortcomings of state of the art Web service repositories and, as a solution, we report on ongoing work and ideas on how to use techniques developed in the context of the Semantic Web (ontology learning, mapping, metadata based presentation) to improve the current situation

    Crowd-Sourcing Fuzzy and Faceted Classification for Concept Search

    Full text link
    Searching for concepts in science and technology is often a difficult task. To facilitate concept search, different types of human-generated metadata have been created to define the content of scientific and technical disclosures. Classification schemes such as the International Patent Classification (IPC) and MEDLINE's MeSH are structured and controlled, but require trained experts and central management to restrict ambiguity (Mork, 2013). While unstructured tags of folksonomies can be processed to produce a degree of structure (Kalendar, 2010; Karampinas, 2012; Sarasua, 2012; Bragg, 2013) the freedom enjoyed by the crowd typically results in less precision (Stock 2007). Existing classification schemes suffer from inflexibility and ambiguity. Since humans understand language, inference, implication, abstraction and hence concepts better than computers, we propose to harness the collective wisdom of the crowd. To do so, we propose a novel classification scheme that is sufficiently intuitive for the crowd to use, yet powerful enough to facilitate search by analogy, and flexible enough to deal with ambiguity. The system will enhance existing classification information. Linking up with the semantic web and computer intelligence, a Citizen Science effort (Good, 2013) would support innovation by improving the quality of granted patents, reducing duplicitous research, and stimulating problem-oriented solution design. A prototype of our design is in preparation. A crowd-sourced fuzzy and faceted classification scheme will allow for better concept search and improved access to prior art in science and technology

    Extending a geo-catalogue with matching capabilities

    Get PDF
    To achieve semantic interoperability, geo-spatial applications need to be equipped with tools able to understand user terminology that is typically different from the one enforced by standards. In this paper we summarize our experience in providing a semantic extension to the geo-catalogue of the Autonomous Province of Trento (PAT) in Italy. The semantic extension is based on the adoption of the S-Match semantic matching tool and on the use of a specifically designed faceted ontology codifying domain specific knowledge. We also briefly report our experience in the integration of the ontology with the geo-spatial ontology GeoWordNet

    Living Knowledge

    Get PDF
    Diversity, especially manifested in language and knowledge, is a function of local goals, needs, competences, beliefs, culture, opinions and personal experience. The Living Knowledge project considers diversity as an asset rather than a problem. With the project, foundational ideas emerged from the synergic contribution of different disciplines, methodologies (with which many partners were previously unfamiliar) and technologies flowed in concrete diversity-aware applications such as the Future Predictor and the Media Content Analyser providing users with better structured information while coping with Web scale complexities. The key notions of diversity, fact, opinion and bias have been defined in relation to three methodologies: Media Content Analysis (MCA) which operates from a social sciences perspective; Multimodal Genre Analysis (MGA) which operates from a semiotic perspective and Facet Analysis (FA) which operates from a knowledge representation and organization perspective. A conceptual architecture that pulls all of them together has become the core of the tools for automatic extraction and the way they interact. In particular, the conceptual architecture has been implemented with the Media Content Analyser application. The scientific and technological results obtained are described in the following

    Crowdsourcing Linked Data on listening experiences through reuse and enhancement of library data

    Get PDF
    Research has approached the practice of musical reception in a multitude of ways, such as the analysis of professional critique, sales figures and psychological processes activated by the act of listening. Studies in the Humanities, on the other hand, have been hindered by the lack of structured evidence of actual experiences of listening as reported by the listeners themselves, a concern that was voiced since the early Web era. It was however assumed that such evidence existed, albeit in pure textual form, but could not be leveraged until it was digitised and aggregated. The Listening Experience Database (LED) responds to this research need by providing a centralised hub for evidence of listening in the literature. Not only does LED support search and reuse across nearly 10,000 records, but it also provides machine-readable structured data of the knowledge around the contexts of listening. To take advantage of the mass of formal knowledge that already exists on the Web concerning these contexts, the entire framework adopts Linked Data principles and technologies. This also allows LED to directly reuse open data from the British Library for the source documentation that is already published. Reused data are re-published as open data with enhancements obtained by expanding over the model of the original data, such as the partitioning of published books and collections into individual stand-alone documents. The database was populated through crowdsourcing and seamlessly incorporates data reuse from the very early data entry phases. As the sources of the evidence often contain vague, fragmentary of uncertain information, facilities were put in place to generate structured data out of such fuzziness. Alongside elaborating on these functionalities, this article provides insights into the most recent features of the latest instalment of the dataset and portal, such as the interlinking with the MusicBrainz database, the relaxation of geographical input constraints through text mining, and the plotting of key locations in an interactive geographical browser

    Bletchley Park text: using mobile and semantic web technologies to support the post-visit use of online museum resources

    Get PDF
    A number of technologies have been developed to support the museum visitor, with the aim of making their visit more educationally rewarding and/or entertaining. Examples include PDA-based personalized tour guides and virtual reality representations of cultural objects or scenes. Rather than supporting the actual visit, we decided to employ technology to support the post-visitor, that is, encourage follow-up activities among recent visitors to a museum. This allowed us to use the technology in a way that would not detract from the existing curated experience and allow the museum to provide access to additional heritage resources that cannot be presented during the physical visit. Within our application, called Bletchley Park Text, visitors express their interests by sending text (SMS) messages containing suggested keywords using their own mobile phone. The semantic description of the archive of resources is then used to retrieve and organize a collection of content into a personalized web site for use when they get home. Organization of the collection occurs both bottom-up from the semantic description of each item in the collection, and also top-down according to a formal representation of the overall museum story. In designing the interface we aimed to support exploration across the content archive rather than just the search and retrieval of specific resources. The service was developed for the Bletchley Park museum and has since been launched for use by all visitors

    Digital libraries and Web 3.0. The CallimachusDL approach

    Get PDF
    The constantly increasing volume of information available on the Internet is changing the forms of clas sification and access to data. Given the immense collection of information stored on the Internet, digital libraries constitute a fundamental subject of research. Among the challenges of classifying, locating and accessing knowledge in digital libraries tackling with the huge amount of resources the Web provides, improving digital libraries by means of different strategies, particularly, using semantics remains a prom ising and interesting approach. In this paper, CallimachusDL is presented, a semantics based digital library which provides faceted search, enhanced access possibilities and a proof of concept implementa tion. CallimachusDL represents a novel approach to digital libraries, integrating social web and multime dia elements in a semantically annotated repository. The results of the implementation indicate that the features proposed in CallimachusDL are encouraging and extendable in the use of digital libraries.Publicad

    Modeling Faceted Browsing with Category Theory for Reuse and Interoperability

    Get PDF
    Faceted browsing (also called faceted search or faceted navigation) is an exploratory search model where facets assist in the interactive navigation of search results. Facets are attributes that have been assigned to describe resources being explored; a faceted taxonomy is a collection of facets provided by the interface and is often organized as sets, hierarchies, or graphs. Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted in order to support the development of reusable and interoperable faceted systems. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. In this context, reuse and interoperability are at two levels: between discrete systems and within a single system. Our model works at both levels by leveraging category theory as a common language for representation and computation. We will establish facets and faceted taxonomies as categories and will demonstrate how the computational elements of category theory, including products, merges, pushouts, and pullbacks, extend the usefulness of our model. More specifically, we demonstrate that categorical constructions such as the pullback and pushout operations can help organize and reorganize facets; these operations in particular can produce faceted views containing relationships not found in the original source taxonomy. We show how our category-theoretic model of facets relates to database schemas and discuss how this relationship assists in implementing the abstractions presented. We give examples of interactive interfaces from the biomedical domain to help illustrate how our abstractions relate to real-world requirements while enabling systematic reuse and interoperability. We introduce DELVE (Document ExpLoration and Visualization Engine), our framework for developing interactive visualizations as modular Web-applications in order to assist researchers with exploratory literature search. We show how facets relate to and control visualizations; we give three examples of text visualizations that either contain or interact with facets. We show how each of these visualizations can be represented with our model and demonstrate how our model directly informs implementation. With our general framework for communicating consistently about facets at a high level of abstraction, we enable the construction of interoperable interfaces and enable the intelligent reuse of both existing and future efforts

    Callimachus DL: using semantics to enhance search and etrieval in a digital library.

    Get PDF
    Proceedings of: First World Summit on the Knowledge Society, (WSKS 2008), Athens, Greece, September 24-26, 2008Among the challenges of classifying, locating and accessing knowledge in Digital Libraries tackling with the huge amount of resources the Web provides, improving Digital Libraries by means of different strategies, particularly, using semantics remains a promising and interesting approach. In this paper, we present CallimachusDL, a semantics-based Digital Library which provides faceted search, enhanced access possibilities and a proof-of-concept implementation.Publicad
    corecore