5 research outputs found

    Hashing Solutions Instead of Generating Problems:On the Interactive Certification of RSA Moduli

    Get PDF
    Certain RSA-based protocols, for instance in the domain of group signatures, require a prover to convince a verifier that a set of RSA parameters is well-structured (e.g., that the modulus is the product of two distinct primes and that the exponent is co-prime to the group order). Various corresponding proof systems have been proposed in the past, with different levels of generality, efficiency, and interactivity. This paper proposes two new proof systems for a wide set of properties that RSA and related moduli might have. The protocols are particularly efficient: The necessary computations are simple, the communication is restricted to only one round, and the exchanged messages are short. While the first protocol is based on prior work (improving on it by reducing the number of message passes from four to two), the second protocol is novel. Both protocols require a random oracle

    Adversary-dependent Lossy Trapdoor Function from Hardness of Factoring Semi-smooth RSA Subgroup Moduli

    Get PDF
    Lossy trapdoor functions (LTDFs), proposed by Peikert and Waters (STOC\u2708), are known to have a number of applications in cryptography. They have been constructed based on various assumptions, which include the quadratic residuosity (QR) and decisional composite residuosity (DCR) assumptions, which are factoring-based {\it decision} assumptions. However, there is no known construction of an LTDF based on the factoring assumption or other factoring-related search assumptions. In this paper, we first define a notion of {\it adversary-dependent lossy trapdoor functions} (ad-LTDFs) that is a weaker variant of LTDFs. Then we construct an ad-LTDF based on the hardness of factorizing RSA moduli of a special form called semi-smooth RSA subgroup (SS) moduli proposed by Groth (TCC\u2705). Moreover, we show that ad-LTDFs can replace LTDFs in many applications. Especially, we obtain the first factoring-based deterministic encryption scheme that satisfies the security notion defined by Boldyreva et al. (CRYPTO\u2708) without relying on a decision assumption. Besides direct applications of ad-LTDFs, by a similar technique, we construct a chosen ciphertext secure public key encryption scheme whose ciphertext overhead is the shortest among existing schemes based on the factoring assumption w.r.t. SS moduli

    素因数分解に基づく暗号における新たな手法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 國廣 昇, 東京大学教授 山本 博資, 東京大学教授 津田 宏治, 東京大学講師 佐藤 一誠, 東京工業大学教授 田中 圭介University of Tokyo(東京大学

    On Cryptographic Building Blocks and Transformations

    Get PDF
    Cryptographic building blocks play a central role in cryptography, e.g., encryption or digital signatures with their security notions. Further, cryptographic building blocks might be constructed modularly, i.e., emerge out of other cryptographic building blocks. Essentially, one cryptographically transforms the underlying block(s) and their (security) properties into the emerged block and its properties. This thesis considers cryptographic building blocks and new cryptographic transformations
    corecore