7,104 research outputs found

    How to Integrate a Polynomial over a Simplex

    Full text link
    This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes, discussion of other available methods and experimental results.Comment: Tables added with new experimental results. References adde

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

    Get PDF
    We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the exact rate of convergence is Theta(1/r^2), and explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.Comment: 14 pages, 2 figure

    Star Integrals, Convolutions and Simplices

    Full text link
    We explore single and multi-loop conformal integrals, such as the ones appearing in dual conformal theories in flat space. Using Mellin amplitudes, a large class of higher loop integrals can be written as simple integro-differential operators on star integrals: one-loop nn-gon integrals in nn dimensions. These are known to be given by volumes of hyperbolic simplices. We explicitly compute the five-dimensional pentagon integral in full generality using Schl\"afli's formula. Then, as a first step to understanding higher loops, we use spline technology to construct explicitly the 6d6d hexagon and 8d8d octagon integrals in two-dimensional kinematics. The fully massive hexagon and octagon integrals are then related to the double box and triple box integrals respectively. We comment on the classes of functions needed to express these integrals in general kinematics, involving elliptic functions and beyond.Comment: 23 page
    corecore