12 research outputs found

    Deep learning that scales: leveraging compute and data

    Get PDF
    Deep learning has revolutionized the field of artificial intelligence in the past decade. Although the development of these techniques spans over several years, the recent advent of deep learning is explained by an increased availability of data and compute that have unlocked the potential of deep neural networks. They have become ubiquitous in domains such as natural language processing, computer vision, speech processing, and control, where enough training data is available. Recent years have seen continuous progress driven by ever-growing neural networks that benefited from large amounts of data and computing power. This thesis is motivated by the observation that scale is one of the key factors driving progress in deep learning research, and aims at devising deep learning methods that scale gracefully with the available data and compute. We narrow down this scope into two main research directions. The first of them is concerned with designing hardware-aware methods which can make the most of the computing resources in current high performance computing facilities. We then study bottlenecks preventing existing methods from scaling up as more data becomes available, providing solutions that contribute towards enabling training of more complex models. This dissertation studies the aforementioned research questions for two different learning paradigms, each with its own algorithmic and computational characteristics. The first part of this thesis studies the paradigm where the model needs to learn from a collection of examples, extracting as much information as possible from the given data. The second part is concerned with training agents that learn by interacting with a simulated environment, which introduces unique challenges such as efficient exploration and simulation

    Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

    Full text link
    The success of deep neural networks is in part due to the use of normalization layers. Normalization layers like Batch Normalization, Layer Normalization and Weight Normalization are ubiquitous in practice, as they improve generalization performance and speed up training significantly. Nonetheless, the vast majority of current deep learning theory and non-convex optimization literature focuses on the un-normalized setting, where the functions under consideration do not exhibit the properties of commonly normalized neural networks. In this paper, we bridge this gap by giving the first global convergence result for two-layer neural networks with ReLU activations trained with a normalization layer, namely Weight Normalization. Our analysis shows how the introduction of normalization layers changes the optimization landscape and can enable faster convergence as compared with un-normalized neural networks.Comment: To be presented at ICML 202

    Expressive Monotonic Neural Networks

    Full text link
    The monotonic dependence of the outputs of a neural network on some of its inputs is a crucial inductive bias in many scenarios where domain knowledge dictates such behavior. This is especially important for interpretability and fairness considerations. In a broader context, scenarios in which monotonicity is important can be found in finance, medicine, physics, and other disciplines. It is thus desirable to build neural network architectures that implement this inductive bias provably. In this work, we propose a weight-constrained architecture with a single residual connection to achieve exact monotonic dependence in any subset of the inputs. The weight constraint scheme directly controls the Lipschitz constant of the neural network and thus provides the additional benefit of robustness. Compared to currently existing techniques used for monotonicity, our method is simpler in implementation and in theory foundations, has negligible computational overhead, is guaranteed to produce monotonic dependence, and is highly expressive. We show how the algorithm is used to train powerful, robust, and interpretable discriminators that achieve competitive performance compared to current state-of-the-art methods across various benchmarks, from social applications to the classification of the decays of subatomic particles produced at the CERN Large Hadron Collider.Comment: 9 pages, 4 figures, ICLR 2023 final submissio

    Deep Double Descent via Smooth Interpolation

    Full text link
    The ability of overparameterized deep networks to interpolate noisy data, while at the same time showing good generalization performance, has been recently characterized in terms of the double descent curve for the test error. Common intuition from polynomial regression suggests that overparameterized networks are able to sharply interpolate noisy data, without considerably deviating from the ground-truth signal, thus preserving generalization ability. At present, a precise characterization of the relationship between interpolation and generalization for deep networks is missing. In this work, we quantify sharpness of fit of the training data interpolated by neural network functions, by studying the loss landscape w.r.t. to the input variable locally to each training point, over volumes around cleanly- and noisily-labelled training samples, as we systematically increase the number of model parameters and training epochs. Our findings show that loss sharpness in the input space follows both model- and epoch-wise double descent, with worse peaks observed around noisy labels. While small interpolating models sharply fit both clean and noisy data, large interpolating models express a smooth loss landscape, where noisy targets are predicted over large volumes around training data points, in contrast to existing intuition

    Eigenvalue initialisation and regularisation for Koopman autoencoders

    Full text link
    Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.Comment: 18 page
    corecore