3,355 research outputs found

    GROUNDTRUTH GENERATION AND DOCUMENT IMAGE DEGRADATION

    Get PDF
    The problem of generating synthetic data for the training and evaluation of document analysis systems has been widely addressed in recent years. With the increased interest in processing multilingual sources, however, there is a tremendous need to be able to rapidly generate data in new languages and scripts, without the need to develop specialized systems. We have developed a system, which uses language support of the MS Windows operating system combined with custom print drivers to render tiff images simultaneously with windows Enhanced Metafile directives. The metafile information is parsed to generate zone, line, word, and character ground truth including location, font information and content in any language supported by Windows. The resulting images can be physically or synthetically degraded by our degradation modules, and used for training and evaluating Optical Character Recognition (OCR) systems. Our document image degradation methodology incorporates several often-encountered types of noise at the page and pixel levels. Examples of OCR evaluation and synthetically degraded document images are given to demonstrate the effectiveness

    Population modeling with machine learning can enhance measures of mental health

    Get PDF
    Background: Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. In contrast, individual differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning on large samples from the general population be used to build proxy measures of these constructs that do not require human intervention? Results: Here, we built proxy measures by applying machine learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date: the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful, and sometimes more useful, than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures at capturing multiple health-related constructs when modeling from, both, brain signals and sociodemographic data. Conclusion: Population modeling with machine learning can derive measures of mental health from heterogeneous inputs including brain signals and questionnaire data. This may complement or even substitute for psychometric assessments in clinical populations

    Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Get PDF
    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different training signals for base networks in an ensemble can effectively promote diversity and improve ensemble performance. Here a Competitive Learning Neural Network Ensemble is proposed where a secondary output unit predicts the classification performance of the primary output unit in each base network. The networks compete with each other on the basis of classification performance and partition the stimulus space. The secondary units adaptively receive different training signals depending on the competition. As the result, each base network develops ¡°preference¡± over different regions of the stimulus space as indicated by their secondary unit outputs. To form an ensemble decision, all base networks¡¯ primary unit outputs are combined and weighted according to the secondary unit outputs. The effectiveness of the proposed approach is demonstrated with the experiments on one real-world and four artificial classification problems

    The Spatiotemporal Neural Dynamics of Object Recognition for Natural Images and Line Drawings

    Get PDF
    Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human participants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital, ventral-temporal, and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together, our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings

    Dynamic CPU management for real-time, middleware-based systems

    Get PDF
    Journal ArticleMany real-world distributed, real-time, embedded (DRE) systems, such as multi-agent military applications, are built using commercially available operating systems, middleware, and collections of pre-existing software. The complexity of these systems makes it difficult to ensure that they maintain high quality of service (QOS). At design time, the challenge is to introduce coordinated QOS controls into multiple software elements in a non-invasive manner. At run time, the system must adapt dynamically to maintain high QOS in the face of both expected events, such as application mode changes, and unexpected events, such as resource demands from other applications. In this paper we describe the design and implementation of a CPU Broker for these types of DRE systems. The CPU Broker mediates between multiple real-time tasks and the facilities of a real-time operating system: using feedback and other inputs, it adjusts allocations over time to ensure that high application-level QOS is maintained. The broker connects to its monitored tasks in a non-invasive manner, is based on and integrated with industry-standard middleware, and implements an open architecture for new CPU management policies. Moreover, these features allow the broker to be easily combined with other QOS mechanisms and policies, as part of an overall end-to-end QOS management system. We describe our experience in applying the CPU Broker to a simulated DRE military system. Our results show that the broker connects to the system transparently and allows it to function in the face of run-time CPU resource contention

    Rangeland degradation assessment using remote sensing and vegetation species.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.The degradation of rangeland grass is currently one of the most serious environmental problems in South Africa. Increaser and decreaser grass species have been used as indicators to evaluate rangeland condition. Therefore, classifying these species and monitoring their relative abundance is an important step for sustainable rangelands management. Traditional methods (e.g. wheel point technique) have been used in classifying increaser and decreaser species over small geographic areas. These methods are regarded as being costly and time-consuming, because grasslands usually cover large expanses that are situated in isolated and inaccessible areas. In this regard, remote sensing techniques offer a practical and economical means for quantifying rangeland degradation over large areas. Remote sensing is capable of providing rapid, relatively inexpensive, and near-real-time data that could be used for classifying and monitoring species. This study advocates the development of techniques based on remote sensing to classify four dominant increaser species associated with rangeland degradation namely: Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa in Okhombe communal rangeland, KwaZulu-Natal, South Africa. To our knowledge, no attempt has yet been made to discriminate and characterize the landscape using these species as indicators of the different levels of rangeland degradation using remote sensing. The first part of the thesis reviewed the problem of rangeland degradation in South Africa, the use of remote sensing (multispectral and hyperspectral) and their challenges and opportunities in mapping rangeland degradation using different indicators. The concept of decreaser and increaser species and how it can be used to map rangeland degradation was discussed. The second part of this study focused on exploring the relationship between vegetation species (increaser and decreaser species) and different levels of rangeland degradation. Results showed that, there is significant relationship between the abundance and distribution of different vegetation species and rangeland condition. The third part of the study aimed to investigate the potential use of hyperspectral remote sensing in discriminating between four increaser species using the raw field spectroscopy data and discriminant analysis as a classifier. The results indicate that the spectroscopic approach used in this study has a strong potential to discriminate among increaser species. These positive results prompted the need to scale up the method to airborne remote sensing data characteristics for the purpose of possible mapping of rangeland species as indicators of degradation. We investigated whether canopy reflectance spectra resampled to AISA Eagle resolution and random forest as a classification algorithm could discriminate between four increaser species. Results showed that hyperspectral data assessed with the random forest algorithm has the potential to accurately discriminate species with best overall accuracy. Knowledge on reduced key wavelength regions and spectral band combinations for successful discrimination of increaser species was obtained. These wavelengths were evaluated using the new WorldView imagery containing unique and strategically positioned band settings. The study demonstrated the potential of WorldView-2 bands in classifying grass at species level with an overall accuracy of 82% which is only 5% less than an overall accuracy achieved by AISA Eagle hyperspectral data. Overall, the study has demonstrated the potential of remote sensing techniques to classify different increaser species representing levels of rangeland degradation. In this regard, we expect that the results of this study can be used to support up-to-date monitoring system for sustainable rangeland management
    corecore