6,944 research outputs found

    EXODUS: Integrating intelligent systems for launch operations support

    Get PDF
    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described

    Information Systems Group. Progress report 1 Jan - 31 Dec 1989

    Get PDF

    BRAHMS: Novel middleware for integrated systems computation

    Get PDF
    Biological computational modellers are becoming increasingly interested in building large, eclectic models, including components on many different computational substrates, both biological and non-biological. At the same time, the rise of the philosophy of embodied modelling is generating a need to deploy biological models as controllers for robots in real-world environments. Finally, robotics engineers are beginning to find value in seconding biomimetic control strategies for use on practical robots. Together with the ubiquitous desire to make good on past software development effort, these trends are throwing up new challenges of intellectual and technological integration (for example across scales, across disciplines, and even across time) - challenges that are unmet by existing software frameworks. Here, we outline these challenges in detail, and go on to describe a newly developed software framework, BRAHMS. that meets them. BRAHMS is a tool for integrating computational process modules into a viable, computable system: its generality and flexibility facilitate integration across barriers, such as those described above, in a coherent and effective way. We go on to describe several cases where BRAHMS has been successfully deployed in practical situations. We also show excellent performance in comparison with a monolithic development approach. Additional benefits of developing in the framework include source code self-documentation, automatic coarse-grained parallelisation, cross-language integration, data logging, performance monitoring, and will include dynamic load-balancing and 'pause and continue' execution. BRAHMS is built on the nascent, and similarly general purpose, model markup language, SystemML. This will, in future, also facilitate repeatability and accountability (same answers ten years from now), transparent automatic software distribution, and interfacing with other SystemML tools. (C) 2009 Elsevier Ltd. All rights reserved

    A hierarchical distributed control model for coordinating intelligent systems

    Get PDF
    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center

    `Electronic Publishing' -- Practice and Experience

    Get PDF
    Electronic Publishing -- Origination, Dissemination and Design (EP-odd) is an academic journal which publishes refereed papers in the subject area of electronic publishing. The authors of the present paper are, respectively, editor-in-chief, system software consultant and senior production manager for the journal. EP-odd's policy is that editors, authors, referees and production staff will work closely together using electronic mail. Authors are also encouraged to originate their papers using one of the approved text-processing packages together with the appropriate set of macros which enforce the layout style for the journal. This same software will then be used by the publisher in the production phase. Our experiences with these strategies are presented, and two recently developed suites of software are described: one of these makes the macro sets available over electronic mail and the other automates the flow of papers through the refereeing process. The decision to produce EP-odd in this way means that the publisher has to adopt production procedures which differ markedly from those employed for a conventional journal

    Financing sustainable energy for all: pay-as-you-go vs. traditional solar finance approaches in Kenya

    Get PDF
    This paper focuses on finance for Solar Home Systems (SHSs) in Kenya and asks to what extent emerging new finance approaches are likely to address the shortcomings of past approaches. Drawing on the STEPS Pathways Approach we adopt a framing that understands finance within a broader socio-technical context as a necessary but not sufficient component of achieving alternative pathways to sustainable energy access. The paper contributes in four ways. Firstly, it presents a comprehensive overview of past and new emerging approaches to financing SHSs in Kenya and their relative strengths and weaknesses. Secondly, it represents one of the first attempts in the literature to analyse the potential of new, real time monitoring technologies and pay as you go finance models to overcome the barriers faced by conventional consumer finance models for off-grid renewable energy technologies (RETs). Thirdly, by applying for the first time we are aware of a socio-technical approach, via the application of Strategic Niche Management (SNM) theory, to analyse the finance of RETs in developing countries, the analysis considers finance in the context of the social practices poor people seek to fulfil via access to the energy services that off-grid RETs provide, and the ways in which people previously paid for these services (e.g. via kerosene for lighting). This also situates the analysis within the understanding of SHSs as a niche that has to compete with the established regime of energy service provision and its attendant social and political institutional support. The paper therefore also contributes to the small but expanding body of literature that seeks to operationalise socio-technical transitions thinking and SNM within a developing country context
    • …
    corecore