8,484 research outputs found

    Algorithmic problems for free-abelian times free groups

    Get PDF
    We study direct products of free-abelian and free groups with special emphasis on algorithmic problems. After giving natural extensions of standard notions into that family, we find an explicit expression for an arbitrary endomorphism of \ZZ^m \times F_n. These tools are used to solve several algorithmic and decision problems for \ZZ^m \times F_n : the membership problem, the isomorphism problem, the finite index problem, the subgroup and coset intersection problems, the fixed point problem, and the Whitehead problem.Comment: 38 page

    Orbit decidability and the conjugacy problem for some extensions of groups

    No full text
    Given a short exact sequence of groups with certain conditions, 1 ? F ? G ? H ? 1, weprove that G has solvable conjugacy problem if and only if the corresponding action subgroupA 6 Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable,among others, for all groups of the form Z2?Fm, F2?Fm, Fn?Z, and Zn?A Fm with virtually solvable action group A 6 GLn(Z). Also, we give an easy way of constructing groups of the form Z4?Fn and F3?Fn with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2) is given

    Intersection problem for Droms RAAGs

    Get PDF
    We solve the subgroup intersection problem (SIP) for any RAAG G of Droms type (i.e., with defining graph not containing induced squares or paths of length 3): there is an algorithm which, given finite sets of generators for two subgroups H,K of G, decides whether HKH \cap K is finitely generated or not, and, in the affirmative case, it computes a set of generators for HKH \cap K. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. F_2 x F_2) even have unsolvable SIP.Comment: 33 pages, 12 figures (revised following the referee's suggestions

    Orbit decidability and the conjugacy problem for some extensions of groups

    Full text link
    Given a short exact sequence of groups with certain conditions, 1FGH11\to F\to G\to H\to 1, we prove that GG has solvable conjugacy problem if and only if the corresponding action subgroup AAut(F)A\leqslant Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable, among others, for all groups of the form Z2Fm\mathbb{Z}^2\rtimes F_m, F2FmF_2\rtimes F_m, FnZF_n \rtimes \mathbb{Z}, and ZnAFm\mathbb{Z}^n \rtimes_A F_m with virtually solvable action group AGLn(Z)A\leqslant GL_n(\mathbb{Z}). Also, we give an easy way of constructing groups of the form Z4Fn\mathbb{Z}^4\rtimes F_n and F3FnF_3\rtimes F_n with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2)Aut(F_2) is given

    Stallings graphs for quasi-convex subgroups

    Full text link
    We show that one can define and effectively compute Stallings graphs for quasi-convex subgroups of automatic groups (\textit{e.g.} hyperbolic groups or right-angled Artin groups). These Stallings graphs are finite labeled graphs, which are canonically associated with the corresponding subgroups. We show that this notion of Stallings graphs allows a unified approach to many algorithmic problems: some which had already been solved like the generalized membership problem or the computation of a quasi-convexity constant (Kapovich, 1996); and others such as the computation of intersections, the conjugacy or the almost malnormality problems. Our results extend earlier algorithmic results for the more restricted class of virtually free groups. We also extend our construction to relatively quasi-convex subgroups of relatively hyperbolic groups, under certain additional conditions.Comment: 40 pages. New and improved versio

    Intersection problem for Droms RAAGs

    Get PDF
    We solve the subgroup intersection problem (SIP) for any RAAG G of Droms type (i.e., with defining graph not containing induced squares or paths of length 3): there is an algorithm which, given finite sets of generators for two subgroups H,K of G, decides whether HKH \cap K is finitely generated or not, and, in the affirmative case, it computes a set of generators for HKH \cap K. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. F_2 x F_2) even have unsolvable SIP.Comment: 33 pages, 12 figures (revised following the referee's suggestions

    The cohomology of the Lyons group and double covers of alternating groups

    Get PDF
    We compute the mod 2 cohomology of the sporadic simple group Ly as well as that of the double covers of the alternating groups A_8 and A_10

    Computing generators of the unit group of an integral abelian group ring

    Get PDF
    We describe an algorithm for obtaining generators of the unit group of the integral group ring ZG of a finite abelian group G. We used our implementation in Magma of this algorithm to compute the unit groups of ZG for G of order up to 110. In particular for those cases we obtained the index of the group of Hoechsmann units in the full unit group. At the end of the paper we describe an algorithm for the more general problem of finding generators of an arithmetic group corresponding to a diagonalizable algebraic group
    corecore