204,889 research outputs found

    Efficient ConvNets for Analog Arrays

    Full text link
    Analog arrays are a promising upcoming hardware technology with the potential to drastically speed up deep learning. Their main advantage is that they compute matrix-vector products in constant time, irrespective of the size of the matrix. However, early convolution layers in ConvNets map very unfavorably onto analog arrays, because kernel matrices are typically small and the constant time operation needs to be sequentially iterated a large number of times, reducing the speed up advantage for ConvNets. Here, we propose to replicate the kernel matrix of a convolution layer on distinct analog arrays, and randomly divide parts of the compute among them, so that multiple kernel matrices are trained in parallel. With this modification, analog arrays execute ConvNets with an acceleration factor that is proportional to the number of kernel matrices used per layer (here tested 16-128). Despite having more free parameters, we show analytically and in numerical experiments that this convolution architecture is self-regularizing and implicitly learns similar filters across arrays. We also report superior performance on a number of datasets and increased robustness to adversarial attacks. Our investigation suggests to revise the notion that mixed analog-digital hardware is not suitable for ConvNets

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Hybrid analog-digital transmit beamforming for spectrum sharing backhaul networks

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper deals with the problem of analog-digital transmit beamforming under spectrum sharing constraints for backhaul systems. In contrast to fully digital designs, where the spatial processing is done at baseband unit with all the flexible computational resources of digital processors, analog-digital beamforming schemes require that certain processing is done through analog components, such as phase-shifters or switches. These analog components do not have the same processing flexibility as the digital processor, but on the other hand, they can substantially reduce the cost and complexity of the beamforming solution. This paper presents the joint optimization of the analog and digital parts, which results in a nonconvex, NP-hard, and coupled problem. In order to solve it, an alternating optimization with a penalized convex-concave method is proposed. According to the simulation results, this novel iterative procedure is able to find a solution that behaves close to the fully digital beamforming upper bound scheme.Peer ReviewedPostprint (author's final draft
    corecore