350 research outputs found

    Error Detection and Diagnosis for System-on-Chip in Space Applications

    Get PDF
    Tesis por compendio de publicacionesLos componentes electrónicos comerciales, comúnmente llamados componentes Commercial-Off-The-Shelf (COTS) están presentes en multitud de dispositivos habituales en nuestro día a día. Particularmente, el uso de microprocesadores y sistemas en chip (SoC) altamente integrados ha favorecido la aparición de dispositivos electrónicos cada vez más inteligentes que sostienen el estilo de vida y el avance de la sociedad moderna. Su uso se ha generalizado incluso en aquellos sistemas que se consideran críticos para la seguridad, como vehículos, aviones, armamento, dispositivos médicos, implantes o centrales eléctricas. En cualquiera de ellos, un fallo podría tener graves consecuencias humanas o económicas. Sin embargo, todos los sistemas electrónicos conviven constantemente con factores internos y externos que pueden provocar fallos en su funcionamiento. La capacidad de un sistema para funcionar correctamente en presencia de fallos se denomina tolerancia a fallos, y es un requisito en el diseño y operación de sistemas críticos. Los vehículos espaciales como satélites o naves espaciales también hacen uso de microprocesadores para operar de forma autónoma o semi autónoma durante su vida útil, con la dificultad añadida de que no pueden ser reparados en órbita, por lo que se consideran sistemas críticos. Además, las duras condiciones existentes en el espacio, y en particular los efectos de la radiación, suponen un gran desafío para el correcto funcionamiento de los dispositivos electrónicos. Concretamente, los fallos transitorios provocados por radiación (conocidos como soft errors) tienen el potencial de ser una de las mayores amenazas para la fiabilidad de un sistema en el espacio. Las misiones espaciales de gran envergadura, típicamente financiadas públicamente como en el caso de la NASA o la Agencia Espacial Europea (ESA), han tenido históricamente como requisito evitar el riesgo a toda costa por encima de cualquier restricción de coste o plazo. Por ello, la selección de componentes resistentes a la radiación (rad-hard) específicamente diseñados para su uso en el espacio ha sido la metodología imperante en el paradigma que hoy podemos denominar industria espacial tradicional, u Old Space. Sin embargo, los componentes rad-hard tienen habitualmente un coste mucho más alto y unas prestaciones mucho menores que otros componentes COTS equivalentes. De hecho, los componentes COTS ya han sido utilizados satisfactoriamente en misiones de la NASA o la ESA cuando las prestaciones requeridas por la misión no podían ser cubiertas por ningún componente rad-hard existente. En los últimos años, el acceso al espacio se está facilitando debido en gran parte a la entrada de empresas privadas en la industria espacial. Estas empresas no siempre buscan evitar el riesgo a toda costa, sino que deben perseguir una rentabilidad económica, por lo que hacen un balance entre riesgo, coste y plazo mediante gestión del riesgo en un paradigma denominado Nuevo Espacio o New Space. Estas empresas a menudo están interesadas en entregar servicios basados en el espacio con las máximas prestaciones y el mayor beneficio posibles, para lo cual los componentes rad-hard son menos atractivos debido a su mayor coste y menores prestaciones que los componentes COTS existentes. Sin embargo, los componentes COTS no han sido específicamente diseñados para su uso en el espacio y típicamente no incluyen técnicas específicas para evitar que los efectos de la radiación afecten su funcionamiento. Los componentes COTS se comercializan tal cual son, y habitualmente no es posible modificarlos para mejorar su resistencia a la radiación. Además, los elevados niveles de integración de los sistemas en chip (SoC) complejos de altas prestaciones dificultan su observación y la aplicación de técnicas de tolerancia a fallos. Este problema es especialmente relevante en el caso de los microprocesadores. Por tanto, existe un gran interés en el desarrollo de técnicas que permitan conocer y mejorar el comportamiento de los microprocesadores COTS bajo radiación sin modificar su arquitectura y sin interferir en su funcionamiento para facilitar su uso en el espacio y con ello maximizar las prestaciones de las misiones espaciales presentes y futuras. En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y mitigar los errores producidos por radiación en microprocesadores y sistemas en chip (SoC) comerciales, utilizando la interfaz de traza como punto de observación. La interfaz de traza es un recurso habitual en los microprocesadores modernos, principalmente enfocado a soportar las tareas de desarrollo y depuración del software durante la fase de diseño. Sin embargo, una vez el desarrollo ha concluido, la interfaz de traza típicamente no se utiliza durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz de traza constituye un punto de conexión viable para observar el comportamiento de un microprocesador de forma no intrusiva y sin interferir en su funcionamiento. Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar y decodificar la información de traza de un microprocesador COTS moderno de altas prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes aplicaciones y tipos de procesadores. Ha sido diseñado y validado utilizando el dispositivo Zynq-7000 de Xilinx como plataforma de desarrollo, que constituye un dispositivo COTS de interés en la industria espacial. Este dispositivo incluye un procesador ARM Cortex-A9 de doble núcleo, que es representativo del conjunto de microprocesadores hard-core modernos de altas prestaciones. El IP resultante es compatible con la tecnología ARM CoreSight, que proporciona acceso a información de traza en los microprocesadores ARM. El IP incorpora técnicas para detectar errores en el flujo de ejecución y en los datos de la aplicación ejecutada utilizando la información de traza, en tiempo real y con muy baja latencia. El IP se ha validado en campañas de inyección de fallos y también en radiación con protones y neutrones en instalaciones especializadas. También se ha combinado con otras técnicas de tolerancia a fallos para construir técnicas híbridas de mitigación de errores. Los resultados experimentales obtenidos demuestran su alta capacidad de detección y potencialidad en el diagnóstico de errores producidos por radiación. El resultado de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la Agencia Espacial Europea para continuar su desarrollo y posterior explotación.Commercial electronic components, also known as Commercial-Off-The-Shelf (COTS), are present in a wide variety of devices commonly used in our daily life. Particularly, the use of microprocessors and highly integrated System-on-Chip (SoC) devices has fostered the advent of increasingly intelligent electronic devices which sustain the lifestyles and the progress of modern society. Microprocessors are present even in safety-critical systems, such as vehicles, planes, weapons, medical devices, implants, or power plants. In any of these cases, a fault could involve severe human or economic consequences. However, every electronic system deals continuously with internal and external factors that could provoke faults in its operation. The capacity of a system to operate correctly in presence of faults is known as fault-tolerance, and it becomes a requirement in the design and operation of critical systems. Space vehicles such as satellites or spacecraft also incorporate microprocessors to operate autonomously or semi-autonomously during their service life, with the additional difficulty that they cannot be repaired once in-orbit, so they are considered critical systems. In addition, the harsh conditions in space, and specifically radiation effects, involve a big challenge for the correct operation of electronic devices. In particular, radiation-induced soft errors have the potential to become one of the major risks for the reliability of systems in space. Large space missions, typically publicly funded as in the case of NASA or European Space Agency (ESA), have followed historically the requirement to avoid the risk at any expense, regardless of any cost or schedule restriction. Because of that, the selection of radiation-resistant components (known as rad-hard) specifically designed to be used in space has been the dominant methodology in the paradigm of traditional space industry, also known as “Old Space”. However, rad-hard components have commonly a much higher associated cost and much lower performance that other equivalent COTS devices. In fact, COTS components have already been used successfully by NASA and ESA in missions that requested such high performance that could not be satisfied by any available rad-hard component. In the recent years, the access to space is being facilitated in part due to the irruption of private companies in the space industry. Such companies do not always seek to avoid the risk at any cost, but they must pursue profitability, so they perform a trade-off between risk, cost, and schedule through risk management in a paradigm known as “New Space”. Private companies are often interested in deliver space-based services with the maximum performance and maximum benefit as possible. With such objective, rad-hard components are less attractive than COTS due to their higher cost and lower performance. However, COTS components have not been specifically designed to be used in space and typically they do not include specific techniques to avoid or mitigate the radiation effects in their operation. COTS components are commercialized “as is”, so it is not possible to modify them to improve their susceptibility to radiation effects. Moreover, the high levels of integration of complex, high-performance SoC devices hinder their observability and the application of fault-tolerance techniques. This problem is especially relevant in the case of microprocessors. Thus, there is a growing interest in the development of techniques allowing to understand and improve the behavior of COTS microprocessors under radiation without modifying their architecture and without interfering with their operation. Such techniques may facilitate the use of COTS components in space and maximize the performance of present and future space missions. In this Thesis, novel techniques have been developed to detect, diagnose, and mitigate radiation-induced errors in COTS microprocessors and SoCs using the trace interface as an observation point. The trace interface is a resource commonly found in modern microprocessors, mainly intended to support software development and debugging activities during the design phase. However, it is commonly left unused during the operational phase of the system, so it can be reused with no cost. The trace interface constitutes a feasible connection point to observe microprocessor behavior in a non-intrusive manner and without disturbing processor operation. As a result of this Thesis, an IP module has been developed capable to gather and decode the trace information of a modern, high-end, COTS microprocessor. The IP is highly configurable and customizable to support different applications and processor types. The IP has been designed and validated using the Xilinx Zynq-7000 device as a development platform, which is an interesting COTS device for the space industry. This device features a dual-core ARM Cortex-A9 processor, which is a good representative of modern, high-end, hard-core microprocessors. The resulting IP is compatible with the ARM CoreSight technology, which enables access to trace information in ARM microprocessors. The IP is able to detect errors in the execution flow of the microprocessor and in the application data using trace information, in real time and with very low latency. The IP has been validated in fault injection campaigns and also under proton and neutron irradiation campaigns in specialized facilities. It has also been combined with other fault-tolerance techniques to build hybrid error mitigation approaches. Experimental results demonstrate its high detection capabilities and high potential for the diagnosis of radiation-induced errors. The result of this Thesis, developed in the framework of an Industrial Ph.D. between the University Carlos III of Madrid (UC3M) and the company Arquimea, has been successfully transferred to the company business as a project sponsored by European Space Agency to continue its development and subsequent commercialization.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: María Luisa López Vallejo.- Secretario: Enrique San Millán Heredia.- Vocal: Luigi Di Lill

    Analyse und Erweiterung eines fehler-toleranten NoC für SRAM-basierte FPGAs in Weltraumapplikationen

    Get PDF
    Data Processing Units for scientific space mission need to process ever higher volumes of data and perform ever complex calculations. But the performance of available space-qualified general purpose processors is just in the lower three digit megahertz range, which is already insufficient for some applications. As an alternative, suitable processing steps can be implemented in hardware on a space-qualified SRAM-based FPGA. However, suitable devices are susceptible against space radiation. At the Institute for Communication and Network Engineering a fault-tolerant, network-based communication architecture was developed, which enables the construction of processing chains on the basis of different processing modules within suitable SRAM-based FPGAs and allows the exchange of single processing modules during runtime, too. The communication architecture and its protocol shall isolate non SEU mitigated or just partial SEU mitigated modules affected by radiation-induced faults to prohibit the propagation of errors within the remaining System-on-Chip. In the context of an ESA study, this communication architecture was extended with further components and implemented in a representative hardware platform. Based on the acquired experiences during the study, this work analyses the actual fault-tolerance characteristics as well as weak points of this initial implementation. At appropriate locations, the communication architecture was extended with mechanisms for fault-detection and fault-differentiation as well as with a hardware-based monitoring solution. Both, the former measures and the extension of the employed hardware-platform with selective fault-injection capabilities for the emulation of radiation-induced faults within critical areas of a non SEU mitigated processing module, are used to evaluate the effects of radiation-induced faults within the communication architecture. By means of the gathered results, further measures to increase fast detection and isolation of faulty nodes are developed, selectively implemented and verified. In particular, the ability of the communication architecture to isolate network nodes without SEU mitigation could be significantly improved.Instrumentenrechner für wissenschaftliche Weltraummissionen müssen ein immer höheres Datenvolumen verarbeiten und immer komplexere Berechnungen ausführen. Die Performanz von verfügbaren qualifizierten Universalprozessoren liegt aber lediglich im unteren dreistelligen Megahertz-Bereich, was für einige Anwendungen bereits nicht mehr ausreicht. Als Alternative bietet sich die Implementierung von entsprechend geeigneten Datenverarbeitungsschritten in Hardware auf einem qualifizierten SRAM-basierten FPGA an. Geeignete Bausteine sind jedoch empfindlich gegenüber der Strahlungsumgebung im Weltraum. Am Institut für Datentechnik und Kommunikationsnetze wurde eine fehlertolerante netzwerk-basierte Kommunikationsarchitektur entwickelt, die innerhalb eines geeigneten SRAM-basierten FPGAs Datenverarbeitungsmodule miteinander nach Bedarf zu Verarbeitungsketten verbindet, sowie den Austausch von einzelnen Modulen im Betrieb ermöglicht. Nicht oder nur partiell SEU mitigierte Module sollen bei strahlungsbedingten Fehlern im Modul durch das Protokoll und die Fehlererkennungsmechanismen der Kommunikationsarchitektur isoliert werden, um ein Ausbreiten des Fehlers im restlichen System-on-Chip zu verhindern. Im Kontext einer ESA Studie wurde diese Kommunikationsarchitektur um Komponenten erweitert und auf einer repräsentativen Hardwareplattform umgesetzt. Basierend auf den gesammelten Erfahrungen aus der Studie, wird in dieser Arbeit eine Analyse der tatsächlichen Fehlertoleranz-Eigenschaften sowie der Schwachstellen dieser ursprünglichen Implementierung durchgeführt. Die Kommunikationsarchitektur wurde an geeigneten Stellen um Fehlerdetektierungs- und Fehlerunterscheidungsmöglichkeiten erweitert, sowie um eine hardwarebasierte Überwachung ergänzt. Sowohl diese Maßnahmen, als auch die Erweiterung der Hardwareplattform um gezielte Fehlerinjektions-Möglichkeiten zum Emulieren von strahlungsinduzierten Fehlern in kritischen Komponenten eines nicht SEU mitigierten Prozessierungsmoduls werden genutzt, um die tatsächlichen auftretenden Effekte in der Kommunikationsarchitektur zu evaluieren. Anhand der Ergebnisse werden weitere Verbesserungsmaßnahmen speziell zur schnellen Detektierung und Isolation von fehlerhaften Knoten erarbeitet, selektiv implementiert und verifiziert. Insbesondere die Fähigkeit, fehlerhafte, nicht SEU mitigierte Netzwerkknoten innerhalb der Kommunikationsarchitektur zu isolieren, konnte dabei deutlich verbessert werden

    First flight of the ATMOS instrument during the Spacelab 3 Mission, April 29 through May 6, 1985

    Get PDF
    The underlying rationale and the implementation of the Atmospheric Trace Molecule Spectroscopy (ATMOS) investigation are discussed, a description of the sensor is given, and the ground tests and integration procedures leading to the Spacelab 3 flight are described. The data reduction and analysis procedures used after the flight are discussed, a number of examples of the spectra obtained are shown, and the concentration profiles as a function of altitude for the minor and trace gases measured during the mission are presented. On the basis of the instrument's ability to survive both the launch and the reentry of the shuttle and its flawless performance while on orbit, the concepts involved in the investigation have been proved by the Spacelab 3 flight, and an extended series of reflights is currently being planned as a part of the Atmospheric Laboratory for Applications and Science (ATLAS) Missions. The goals for the investigation during these missions are also discussed

    Selected topics in robotics for space exploration

    Get PDF
    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Fault tolerant design implementation on radiation hardened by design SRAM-Based FPGAs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections."June 2013." Cataloged from department-submitted PDF version of thesisIncludes bibliographical references (p. 197-204).SRAM-based FPGAs are highly attractive for space applications due to their in-flight reconfigurability, decreased development time and cost, and increased design and testing flexibility. The Xilinx Virtex-5QV is the first commercially available Radiation Hardened By Design (RHBD) SRAM-based FPGA; however, not all of its internal components are hardened against radiation-induced errors. This thesis examines and quantifies the additional considerations and techniques designers should employ with a RHBD SRAM-based FPGA in a space-based processing system to achieve high operational reliability. Additionally, this work presents the application of some of these techniques to the embedded avionics design of the REXIS imaging payload on the OSIRIS-REx asteroid sample return mission.by Frank Hall Schmidt, Jr.S.M

    Solar Dynamics Observatory Launch and Commissioning

    Get PDF
    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed

    Physically-Adaptive Computing via Introspection and Self-Optimization in Reconfigurable Systems.

    Full text link
    Digital electronic systems typically must compute precise and deterministic results, but in principle have flexibility in how they compute. Despite the potential flexibility, the overriding paradigm for more than 50 years has been based on fixed, non-adaptive inte-grated circuits. This one-size-fits-all approach is rapidly losing effectiveness now that technology is advancing into the nanoscale. Physical variation and uncertainty in com-ponent behavior are emerging as fundamental constraints and leading to increasingly sub-optimal fault rates, power consumption, chip costs, and lifetimes. This dissertation pro-poses methods of physically-adaptive computing (PAC), in which reconfigurable elec-tronic systems sense and learn their own physical parameters and adapt with fine granu-larity in the field, leading to higher reliability and efficiency. We formulate the PAC problem and provide a conceptual framework built around two major themes: introspection and self-optimization. We investigate how systems can efficiently acquire useful information about their physical state and related parameters, and how systems can feasibly re-implement their designs on-the-fly using the information learned. We study the role not only of self-adaptation—where the above two tasks are performed by an adaptive system itself—but also of assisted adaptation using a remote server or peer. We introduce low-cost methods for sensing regional variations in a system, including a flexible, ultra-compact sensor that can be embedded in an application and implemented on field-programmable gate arrays (FPGAs). An array of such sensors, with only 1% to-tal overhead, can be employed to gain useful information about circuit delays, voltage noise, and even leakage variations. We present complementary methods of regional self-optimization, such as finding a design alternative that best fits a given system region. We propose a novel approach to characterizing local, uncorrelated variations. Through in-system emulation of noise, previously hidden variations in transient fault sus-ceptibility are uncovered. Correspondingly, we demonstrate practical methods of self-optimization, such as local re-placement, informed by the introspection data. Forms of physically-adaptive computing are strongly needed in areas such as com-munications infrastructure, data centers, and space systems. This dissertation contributes practical methods for improving PAC costs and benefits, and promotes a vision of re-sourceful, dependable digital systems at unimaginably-fine physical scales.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78922/1/kzick_1.pd

    Increasing the reliability and applicability of measurement-based probabilistic timing analysis

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2019Conforme a complexidade das arquiteturas computacionais aumenta para melhorar desempenho ou reduzir custos, o uso de processadores modernos em Sistemas de Tempo Real (STRs) é prejudicado cada vez mais pelo surgimento de efeitos temporais que dificultam a obtenção de limites confiáveis e precisos para os Worst-Case Execution Times (WCETs) de tarefas. A Análise Temporal Probabilística Baseada em Medições (ATPBM) visa determinar limites probabilísticos de WCET (i.e. pWCETs) aplicando a Teoria de Valores Extremos (TVE) sobre medições de tempos de execução, e é portanto promissora no tratamento da complexidade de hardware no projeto de STRs. Processadores temporalmente aleatorizados foram recentemente propostos para tornar o comportamento temporal de sistemas computacionais mais facilmente analisável através de ferramental probabilístico, e são projetados substituindo informações internas determinísticas ou especulativas por números (pseudo-)aleatórios. A pesquisa cujos resultados são apresentados nesta tese produziu contribuições em duas frentes distintas. Em primeiro lugar, foram propostos e aplicados métodos para avaliar a confiabilidade dos pWCETs produzidos pela ATPBM, baseados na coleta de grandes amostras de tempos de execução e na comparação (1) dos pWCETs com os maiores tempos de execução observados, e (2) das densidades de excedência dos pWCETs com seus valores esperados. Essas avaliações indicaram que modelos probabilísticos da TVE projetados para gerar margens mais precisas podem muitas vezes levar a subestimativas de pWCETs, e recomendou-se então que modelos sobrestimadores devem ser utilizados para obter-se pWCETs mais confiáveis. Em segundo lugar, avaliou-se a hipótese de que técnicas de escalonamento aleatorizado podem beneficiar a análise temporal de tarefas executadas em pipelines multithread através da ATPBM, por levarem os tempos de execução produzidos a atenderem às premissas básicas de aplicabilidade da técnica. Para tal, foram considerados tanto (A) um escalonador puramente aleatório, quanto (B) um escalonador aleatorizado capaz de limitar os efeitos temporais da interferência entre threads, sem comprometer sua analisabilidade pela ATPBM, através de um mecanismo de regulação de elegibilidade baseado em créditos.Abstract: As the complexity of computer architectures grows in order to improve performance and/or to reduce costs, the use of modern processors in the design of Real-Time Systems (RTSs) is increasingly hampered by the emergence of timing effects that challenge determining reliable and tight bounds for tasks' Worst-Case Execution Times (WCETs). The Measurement-Based Probabilistic Timing Analysis (MBPTA) technique aims determining probabilistic WCET bounds (i.e. pWCETs) by applying Extreme Value Theory (EVT) on tasks' execution time measurements, and is hence promising in handling hardware complexity issues within RTSs' design. Hardware-level time-randomized processors were recently proposed as a means to cause computing systems' timing behaviour to become more easily analysable through probabilistic tools, and are designed replacing deterministic or speculative internal information with (pseudo-)random numbers. The scientific research whose outcomes are presented in this thesis produced contributions on two distinct fronts. In first place, we proposed and applied methods for evaluating the reliability of pWCET estimates produced using MBPTA, based on collecting large execution time samples and then comparing (1) the pWCETs against the largest observed execution times, and (2) pWCETs' exceedance densities against their expected values. These evaluations led us to conclude that EVT probabilistic models intended to yield more precise bounds may often lead to pWCET underestimations, and we hence recommended that upper-bounding models should instead be used for deriving pWCETs with increased reliability. In second place, we evaluated the hypothesis that randomized scheduling techniques can benefit the timing analysis of tasks executed on multithread pipelines through MBPTA, by causing the yielded execution times to meet the technique's basic application requirements. For that, we considered both (A) a scheduler that employs a purely random policy, and (B) a randomized scheduler capable of limiting the timing effects of inter-thread interference, without compromising analysability, by using a credit-based eligibility regulation mechanism
    corecore