2,303 research outputs found

    A Meaningful MD5 Hash Collision Attack

    Get PDF
    It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack that would generate two different messages that gives the same MD5 sum. Many conditions need to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster technique to implement this attack. We use these techniques to first create a collision attack and then use these collisions to implement meaningful collisions by creating two different packages that give identical MD5 hash, but when extracted, each gives out different files with contents specified by the atacker

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals

    A Symbolic Intruder Model for Hash-Collision Attacks

    Get PDF
    In the recent years, several practical methods have been published to compute collisions on some commonly used hash functions. In this paper we present a method to take into account, at the symbolic level, that an intruder actively attacking a protocol execution may use these collision algorithms in reasonable time during the attack. Our decision procedure relies on the reduction of constraint solving for an intruder exploiting the collision properties of hush functions to constraint solving for an intruder operating on words

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device
    • 

    corecore