509,753 research outputs found

    The Online Knapsack Problem with Departures

    Full text link
    The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing

    Linear Capacity Scaling in Wireless Networks: Beyond Physical Limits?

    Full text link
    We investigate the role of cooperation in wireless networks subject to a spatial degrees of freedom limitation. To address the worst case scenario, we consider a free-space line-of-sight type environment with no scattering and no fading. We identify three qualitatively different operating regimes that are determined by how the area of the network A, normalized with respect to the wavelength lambda, compares to the number of users n. In networks with sqrt{A}/lambda < sqrt{n}, the limitation in spatial degrees of freedom does not allow to achieve a capacity scaling better than sqrt{n} and this performance can be readily achieved by multi-hopping. This result has been recently shown by Franceschetti et al. However, for networks with sqrt{A}/lambda > sqrt{n}, the number of available degrees of freedom is min(n, sqrt{A}/lambda), larger that what can be achieved by multi-hopping. We show that the optimal capacity scaling in this regime is achieved by hierarchical cooperation. In particular, in networks with sqrt{A}/lambda> n, hierarchical cooperation can achieve linear scaling.Comment: 10 pages, 5 figures, in Proc. of IEEE Information Theory and Applications Workshop, Feb. 201

    An Optimistic-Robust Approach for Dynamic Positioning of Omnichannel Inventories

    Full text link
    We introduce a new class of data-driven and distribution-free optimistic-robust bimodal inventory optimization (BIO) strategy to effectively allocate inventory across a retail chain to meet time-varying, uncertain omnichannel demand. While prior Robust optimization (RO) methods emphasize the downside, i.e., worst-case adversarial demand, BIO also considers the upside to remain resilient like RO while also reaping the rewards of improved average-case performance by overcoming the presence of endogenous outliers. This bimodal strategy is particularly valuable for balancing the tradeoff between lost sales at the store and the costs of cross-channel e-commerce fulfillment, which is at the core of our inventory optimization model. These factors are asymmetric due to the heterogenous behavior of the channels, with a bias towards the former in terms of lost-sales cost and a dependence on network effects for the latter. We provide structural insights about the BIO solution and how it can be tuned to achieve a preferred tradeoff between robustness and the average-case. Our experiments show that significant benefits can be achieved by rethinking traditional approaches to inventory management, which are siloed by channel and location. Using a real-world dataset from a large American omnichannel retail chain, a business value assessment during a peak period indicates over a 15% profitability gain for BIO over RO and other baselines while also preserving the (practical) worst case performance

    Minimizing internal speedup for performance guaranteed optical packet switches

    Get PDF
    Providing QoS guarantee for Internet services is very important It evokes the issue that packet switches should provide guaranteed performance (i.e. 100% throughput with bounded worst-case delay). Optical switching technology is widely considered as an excellent solution for packet switches in future networks. However, to achieve guaranteed performance in optical packet switches, an internal speedup is required due to the existence of reconfiguration overhead. How to reduce the internal speedup is the main concern for making these switches practical In this paper, we first derive the internal speedup S as a function of the number of switch configurations N S and the reconfiguration overhead δ, or S=f(N S,δ). We show that the recently proposed ADJUST algorithm is flawed. Based on the internal speedup function we derived, a new algorithm (ADAPTIVE), with time complexity of O((λ-l)N 2logN), is proposed to minimize S. © 2004 IEEE.published_or_final_versio

    Subset-Based Instance Optimality in Private Estimation

    Full text link
    We propose a new definition of instance optimality for differentially private estimation algorithms. Our definition requires an optimal algorithm to compete, simultaneously for every dataset DD, with the best private benchmark algorithm that (a) knows DD in advance and (b) is evaluated by its worst-case performance on large subsets of DD. That is, the benchmark algorithm need not perform well when potentially extreme points are added to DD; it only has to handle the removal of a small number of real data points that already exist. This makes our benchmark significantly stronger than those proposed in prior work. We nevertheless show, for real-valued datasets, how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties, including means, quantiles, and â„“p\ell_p-norm minimizers. For means in particular, we provide a detailed analysis and show that our algorithm simultaneously matches or exceeds the asymptotic performance of existing algorithms under a range of distributional assumptions
    • …
    corecore