334 research outputs found

    The Structured Process Modeling Theory (SPMT): a cognitive view on why and how modelers benefit from structuring the process of process modeling

    Get PDF
    After observing various inexperienced modelers constructing a business process model based on the same textual case description, it was noted that great differences existed in the quality of the produced models. The impression arose that certain quality issues originated from cognitive failures during the modeling process. Therefore, we developed an explanatory theory that describes the cognitive mechanisms that affect effectiveness and efficiency of process model construction: the Structured Process Modeling Theory (SPMT). This theory states that modeling accuracy and speed are higher when the modeler adopts an (i) individually fitting (ii) structured (iii) serialized process modeling approach. The SPMT is evaluated against six theory quality criteria

    How Advanced Change Patterns Impact the Process of Process Modeling

    Get PDF
    Process model quality has been an area of considerable research efforts. In this context, correctness-by-construction as enabled by change patterns provides promising perspectives. While the process of process modeling (PPM) based on change primitives has been thoroughly investigated, only little is known about the PPM based on change patterns. In particular, it is unclear what set of change patterns should be provided and how the available change pattern set impacts the PPM. To obtain a better understanding of the latter as well as the (subjective) perceptions of process modelers, the arising challenges, and the pros and cons of different change pattern sets we conduct a controlled experiment. Our results indicate that process modelers face similar challenges irrespective of the used change pattern set (core pattern set versus extended pattern set, which adds two advanced change patterns to the core patterns set). An extended change pattern set, however, is perceived as more difficult to use, yielding a higher mental effort. Moreover, our results indicate that more advanced patterns were only used to a limited extent and frequently applied incorrectly, thus, lowering the potential benefits of an extended pattern set

    Investigating the trade-off between the effectiveness and efficiency of process modeling

    Get PDF
    Despite recent efforts to improve the quality of process models, we still observe a significant dissimilarity in quality between models. This paper focuses on the syntactic condition of process models, and how it is achieved. To this end, a dataset of 121 modeling sessions was investigated. By going through each of these sessions step by step, a separate ‘revision’ phase was identified for 81 of them. Next, by cutting the modeling process off at the start of the revision phase, a partial process model was exported for these modeling sessions. Finally, each partial model was compared with its corresponding final model, in terms of time, effort, and the number of syntactic errors made or solved, in search for a possible trade-off between the effectiveness and efficiency of process modeling. Based on the findings, we give a provisional explanation for the difference in syntactic quality of process models

    Cognitive aspects of structured process modeling

    Get PDF
    After visualizing data of various observational experiments on the way in which modelers construct process models, a promising process modeling style (i.e., structured process modeling) was discovered that is expected to cause process model quality to increase. A modeler constructs process models in a structured way if she/he is working on few parts of the model simultaneously. This paper describes cognitive theories that can explain this causal relation. Cognitive Load Theory (CLT) suggests that the amount of errors increases when the limited capacity of our working memory is overloaded. Cognitive Fit Theory (CFT) states that performance is improved when task material representation matches with the task to be executed. Three hypotheses are formulated and the experimental set-up to evaluate these hypotheses is described

    A Model-Driven Framework for Domain Specific Process Design and Governance

    Get PDF
    Current BPM approaches and standards have not sufficiently reduced the Business-IT gap. Indeed, today's solutions are mostly domainindependent and platform-dependent, which limits the ability of business matter experts to express business intent and enact process change. In contrast, the tool presented in this paper supports an approach that focuses on BPM and SOA environments in a domain-dependent and platform-independent way. We propose to add a domain specific-layer on top of current solutions so that business stakeholders can design and understand their processes in a more intuitive way. This significantly improves the agility and governance of processes. The demo shows the appropriateness and the feasibility of the approach.Ministerio de Ciencia y TecnologĂ­a TIN2015-63502-C3-2-

    Investigating the process of process modeling and its relation to modeling quality : the role of structured serialization

    Get PDF
    Lately, the focus of organizations is changing fundamentally. Where they used to spend almost exclusively attention to results, in terms of goods, services, revenue and costs, they are now concerned about the efficiency of their business processes. Each step of the business processes needs to be known, controlled and optimized. This explains the huge effort that many organizations currently put into the mapping of their processes in so-called (business) process models. Unfortunately, sometimes these models do not (completely) reflect the business reality or the reader of the model does not interpret the represented information as intended. Hence, whereas on the one hand we observe how organizations are attaching increasing importance to these models, on the other hand we notice how the quality of process models in companies often proves to be insufficient. The doctoral research makes a significant contribution in this context. This work investigates in detail how people create process models and why and when this goes wrong. A better understanding of current process modeling practice will form the basis for the development of concrete guidelines that result in the construction of better process models in the future. The first study investigated how we can represent the approach of different modelers in a cognitive effective way, in order to facilitate knowledge building. For this purpose the PPMChart was developed. It represents the different operations of a modeler in a modeling tool in such a way that patterns in their way of working can be detected easily. Through the collection of 704 unique modeling executions (a joint contribution of several authors in the research domain), and through the development of a concrete implementation of the visualization, it became possible to gather a great amount of insights about how different people work in different situations while modeling a concrete process. The second study explored, based on the discovered modeling patterns of the first study, the potential relations between how process models were being constructed and which quality was delivered. To be precise, three modeling patterns from the previous study were investigated further in their relation with the understandability of the produced process model. By comparing the PPMCharts that show these patterns with corresponding process models, a connection was found in each case. It was noticed that when a process model was constructed in consecutive blocks (i.e., in a structured way), a better understandable process model was produced. A second relation stated that modelers who (frequently) moved (many) model elements during modeling usually created a less understandable model. The third connection was found between the amount of time spent at constructing the model and a declining understandability of the resulting model. These relations were established graphically on paper, but were also confirmed by a simple statistical analysis. The third study selected one of the relations from the previous study, i.e., the relation between structured modeling and model quality, and investigated this relation in more detail. Again, the PPMChart was used, which has lead to the identification of different ways of structured process modeling. When a task is difficult, people will spontaneously split up this task in sub-tasks that are executed consecutively (instead of simultaneously). Structuring is the way in which the splitting of tasks is handled. It was found that when this happens consistently and according to certain logic, modeling became more effective and more efficient. Effective because a process model was created with less syntactic and semantic errors and efficient because it took less time and modeling operations. Still, we noticed that splitting up the modeling in sub-tasks in a structured way, did not always lead to a positive result. This can be explained by some people structuring the modeling in the wrong way. Our brain has cognitive preferences that cause certain ways of working not to fit. The study identified three important cognitive preferences: does one have a sequential or a global learning style, how context-dependent one is and how big one’s desire and need for structure is. The Structured Process Modeling Theory was developed, which captures these relations and which can form the basis for the development of an optimal individual approach to process modeling. In our opinion the theory has the potential to also be applicable in a broader context and to help solving various types of problems effectively and efficiently

    Cognitive Aspects of Structured Process Modeling

    Get PDF
    After visualizing data of various observational experiments on the way in which modelers construct process models, a promising process modeling style (i.e., structured process modeling) was discovered that is expected to cause process model quality to increase. A modeler constructs process models in a structured way if she/he is working on few parts of the model simultaneously. This paper describes cognitive theories that can explain this causal relation. Cognitive Load Theory (CLT) suggests that the amount of errors increases when the limited capacity of our working memory is overloaded. Cognitive Fit Theory (CFT) states that performance is improved when task material representation matches with the task to be executed. Three hypotheses are formulated and the experimental set-up to evaluate these hypotheses is described

    In defence of the household : Marx, gender and the utilitarian impasse

    Get PDF
    Marxism;feminism;household;social research;terminology
    • 

    corecore