282,023 research outputs found

    Optimizing and controlling functions of complex networks by manipulating rich-club connections

    Full text link
    Traditionally, there is no evidence suggesting that there are strong ties between the rich-club property and the function of complex networks. In this study, we find that whether a very small portion of rich nodes connected to each other or not can strongly affect the frequency of occurrence of basic building blocks (motif) within networks, and therefore the function, of a heterogeneous network. Conversely whether a homogeneous network has a rich-club property or not generally has no significant effect on its structure and function. These findings open the possibility to optimize and control the function of complex networks by manipulating rich-club connections. Furthermore, based on the subgraph ratio profile, we develop a more rigorous approach to judge whether a network has a rich-club or not. The new method does not calculate how many links there are among rich nodes but depends on how the links among rich nodes can affect the overall structure as well as function of a given network. These results can also help us to understand the evolution of dynamical networks and design new models for characterizing real-world networks.Comment: 6 pages, 3 figure

    Self-organization of network dynamics into local quantized states

    Get PDF
    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model---a minimal-ingredients model of nodal activation and interaction within a complex network---is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements. Our results show that these self-organized, local structures can provide robust functional units to understand natural and socio-technical network-organized processes.Comment: 11 pages, 4 figure

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

    Get PDF
    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istc- bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.Comment: 10 pages; International Conference on Computational Science workshop on the Applications of Matrix Computational Methods in the Analysis of Modern Dat
    corecore