4,526 research outputs found

    How sleep modes and traffic demands affect the energy efficiency in optical access networks

    Get PDF
    An ever-increasing bandwidth demand is the main driver to investigate next-generation optical access (NGOA) networks. These networks, however, do not only have to comply with increasing data rates, but they should also meet the societal green agenda. As the access part consumes a major fraction of the energy consumption in today's fiber-to-the-home-based telecommunication networks, the energy efficiency of NGOA networks should be an important design parameter. In this paper, we present a detailed evaluation of the energy consumption in different NGOA technologies. Furthermore, we analyze the effects of (1) introducing low power modes (e.g., sleep and doze modes) in the various NGOA technologies and (2) using optimal split ratios adjusted to the traffic demands so that the energy consumption is optimized for the desired quality of service level

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    A quantitative survey of the power saving potential in IP-Over-WDM backbone networks

    Get PDF
    The power consumption in Information and Communication Technologies networks is growing year by year; this growth presents challenges from technical, economic, and environmental points of view. This has lead to a great number of research publications on "green" telecommunication networks. In response, a number of survey works have appeared as well. However, with respect to backbone networks, most survey works: 1) do not allow for an easy cross validation of the savings reported in the various works and 2) nor do they provide a clear overview of the individual and combined power saving potentials. Therefore, in this paper, we survey the reported saving potential in IP-over-WDM backbone telecommunication networks across the existing body of research in that area. We do this by mapping more than ten different approaches to a concise analytical model, which allows us to estimate the combined power reduction potential. Our estimates indicate that the power reduction potential of the once-only approaches is 2.3x in a Moderate Effort scenario and 31x in a Best Effort scenario. Factoring in the historic and projected yearly efficiency improvements ("Moore's law") roughly doubles both values on a ten-year horizon. The large difference between the outcome of Moderate Effort and Best Effort scenarios is explained by the disparity and lack of clarity of the reported saving results and by our (partly) subjective assessment of the feasibility of the proposed approaches. The Moderate Effort scenario will not be sufficient to counter the projected traffic growth, although the Best Effort scenario indicates that sufficient potential is likely available. The largest isolated power reduction potential is available in improving the power associated with cooling and power provisioning and applying sleep modes to overdimensioned equipment

    Post-peak ICT: graceful degradation for communication networks in an energy constrained future

    Get PDF
    In recent years, rising energy prices and increasing environmental concerns have boosted research in the so called green ICT and green networking research tracks, aimed at improving the energy efficiency of communications while still offering maximal functionality. In this article we explore a future scenario in which low power networking is no longer optional, but instead becomes a necessity due to fluctuating energy availability. The contribution of this work is twofold. First, we argue why a so called post-peak future scenario, in which we can no longer rely on fossil fuels as our main resource for electricity production, is not unlikely, and what it might entail. Second, we explore the consequences of such a scenario for ICT: How well can current and future infrastructures cope with temporary energy limitations? As an illustration, we present a case study showing the impact of reduced energy availability on a wireless access network

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin
    • …
    corecore