43 research outputs found

    Online supervised hashing

    Full text link
    Fast nearest neighbor search is becoming more and more crucial given the advent of large-scale data in many computer vision applications. Hashing approaches provide both fast search mechanisms and compact index structures to address this critical need. In image retrieval problems where labeled training data is available, supervised hashing methods prevail over unsupervised methods. Most state-of-the-art supervised hashing approaches employ batch-learners. Unfortunately, batch-learning strategies may be inefficient when confronted with large datasets. Moreover, with batch-learners, it is unclear how to adapt the hash functions as the dataset continues to grow and new variations appear over time. To handle these issues, we propose OSH: an Online Supervised Hashing technique that is based on Error Correcting Output Codes. We consider a stochastic setting where the data arrives sequentially and our method learns and adapts its hashing functions in a discriminative manner. Our method makes no assumption about the number of possible class labels, and accommodates new classes as they are presented in the incoming data stream. In experiments with three image retrieval benchmarks, our method yields state-of-the-art retrieval performance as measured in Mean Average Precision, while also being orders-of-magnitude faster than competing batch methods for supervised hashing. Also, our method significantly outperforms recently introduced online hashing solutions.https://pdfs.semanticscholar.org/555b/de4f14630d8606e37096235da8933df228f1.pdfAccepted manuscrip

    Online hashing for fast similarity search

    Full text link
    In this thesis, the problem of online adaptive hashing for fast similarity search is studied. Similarity search is a central problem in many computer vision applications. The ever-growing size of available data collections and the increasing usage of high-dimensional representations in describing data have increased the computational cost of performing similarity search, requiring search strategies that can explore such collections in an efficient and effective manner. One promising family of approaches is based on hashing, in which the goal is to map the data into the Hamming space where fast search mechanisms exist, while preserving the original neighborhood structure of the data. We first present a novel online hashing algorithm in which the hash mapping is updated in an iterative manner with streaming data. Being online, our method is amenable to variations of the data. Moreover, our formulation is orders of magnitude faster to train than state-of-the-art hashing solutions. Secondly, we propose an online supervised hashing framework in which the goal is to map data associated with similar labels to nearby binary representations. For this purpose, we utilize Error Correcting Output Codes (ECOCs) and consider an online boosting formulation in learning the hash mapping. Our formulation does not require any prior assumptions on the label space and is well-suited for expanding datasets that have new label inclusions. We also introduce a flexible framework that allows us to reduce hash table entry updates. This is critical, especially when frequent updates may occur as the hash table grows larger and larger. Thirdly, we propose a novel mutual information measure to efficiently infer the quality of a hash mapping and retrieval performance. This measure has lower complexity than standard retrieval metrics. With this measure, we first address a key challenge in online hashing that has often been ignored: the binary representations of the data must be recomputed to keep pace with updates to the hash mapping. Based on our novel mutual information measure, we propose an efficient quality measure for hash functions, and use it to determine when to update the hash table. Next, we show that this mutual information criterion can be used as an objective in learning hash functions, using gradient-based optimization. Experiments on image retrieval benchmarks confirm the effectiveness of our formulation, both in reducing hash table recomputations and in learning high-quality hash functions

    Understand-Before-Talk (UBT): A Semantic Communication Approach to 6G Networks

    Full text link
    In Shannon theory, semantic aspects of communication were identified but considered irrelevant to the technical communication problems. Semantic communication (SC) techniques have recently attracted renewed research interests in (6G) wireless because they have the capability to support an efficient interpretation of the significance and meaning intended by a sender (or accomplishment of the goal) when dealing with multi-modal data such as videos, images, audio, text messages, and so on, which would be the case for various applications such as intelligent transportation systems where each autonomous vehicle needs to deal with real-time videos and data from a number of sensors including radars. A notable difficulty of existing SC frameworks lies in handling the discrete constraints imposed on the pursued semantic coding and its interaction with the independent knowledge base, which makes reliable semantic extraction extremely challenging. Therefore, we develop a new lightweight hashing-based semantic extraction approach to the SC framework, where our learning objective is to generate one-time signatures (hash codes) using supervised learning for low latency, secure and efficient management of the SC dynamics. We first evaluate the proposed semantic extraction framework over large image data sets, extend it with domain adaptive hashing and then demonstrate the effectiveness of "semantics signature" in bulk transmission and multi-modal data

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Learning to see across domains and modalities

    Get PDF
    Deep learning has recently raised hopes and expectations as a general solution for many applications (computer vision, natural language processing, speech recognition, etc.); indeed it has proven effective, but it also showed a strong dependence on large quantities of data. Generally speaking, deep learning models are especially susceptible to overfitting, due to their large number of internal parameters. Luckily, it has also been shown that, even when data is scarce, a successful model can be trained by reusing prior knowledge. Thus, developing techniques for \textit{transfer learning} (as this process is known), in its broadest definition, is a crucial element towards the deployment of effective and accurate intelligent systems into the real world. This thesis will focus on a family of transfer learning methods applied to the task of visual object recognition, specifically image classification. The visual recognition problem is central to computer vision research: many desired applications, from robotics to information retrieval, demand the ability to correctly identify categories, places, and objects. Transfer learning is a general term, and specific settings have been given specific names: when the learner has access to only unlabeled data from the target domain (where the model should perform) and labeled data from a different domain (the source), the problem is called unsupervised domain adaptation (DA). The first part of this thesis will focus on three methods for this setting. The three presented techniques for domain adaptation are fully distinct: the first one proposes the use of Domain Alignment layers to structurally align the distributions of the source and target domains in feature space. While the general idea of aligning feature distribution is not novel, we distinguish our method by being one of the very few that do so without adding losses. The second method is based on GANs: we propose a bidirectional architecture that jointly learns how to map the source images into the target visual style and vice-versa, thus alleviating the domain shift at the pixel level. The third method features an adversarial learning process that transforms both the images and the features of both domains in order to map them to a common, agnostic, space. While the first part of the thesis presented general purpose DA methods, the second part will focus on the real life issues of robotic perception, specifically RGB-D recognition. Robotic platforms are usually not limited to color perception; very often they also carry a Depth camera. Unfortunately, the depth modality is rarely used for visual recognition due to the lack of pretrained models from which to transfer and little data to train one on from scratch. We will first explore the use of synthetic data as proxy for real images by training a Convolutional Neural Network (CNN) on virtual depth maps, rendered from 3D CAD models, and then testing it on real robotic datasets. The second approach leverages the existence of RGB pretrained models, by learning how to map the depth data into the most discriminative RGB representation and then using existing models for recognition. This second technique is actually a pretty generic Transfer Learning method which can be applied to share knowledge across modalities
    corecore