216 research outputs found

    Simultaneous Calibration of Grapevine Phenology and Yield with a Soil–Plant–Atmosphere System Model Using the Frequentist Method

    Get PDF
    Reliable estimations of parameter values and associated uncertainties are crucial for crop model applications in agro-environmental research. However, estimating many parameters simultaneously for different types of response variables is difficult. This becomes more complicated for grapevines with different phenotypes between varieties and training systems. Our study aims to evaluate how a standard least square approach can be used to calibrate a complex grapevine model for simulating both the phenology (flowering and harvest date) and yield of four different variety–training systems in the Douro Demarcated Region, northern Portugal. An objective function is defined to search for the best-fit parameters that result in the minimum value of the unweighted sum of the normalized Root Mean Squared Error (nRMSE) of the studied variables. Parameter uncertainties are estimated as how a given parameter value can determine the total prediction variability caused by variations in the other parameter combinations. The results indicate that the best-estimated parameters show a satisfactory predictive performance, with a mean bias of −2 to 4 days for phenology and −232 to 159 kg/ha for yield. The corresponding variance in the observed data was generally well reproduced, except for one occasion. These parameters are a good trade-off to achieve results close to the best possible fit of each response variable. No parameter combinations can achieve minimum errors simultaneously for phenology and yield, where the best fit to one variable can lead to a poor fit to another. The proposed parameter uncertainty analysis is particularly useful to select the best-fit parameter values when several choices with equal performance occur. A global sensitivity analysis is applied where the fruit-setting parameters are identified as key determinants for yield simulations. Overall, the approach (including uncertainty analysis) is relatively simple and straightforward without specific pre-conditions (e.g., model continuity), which can be easily applied for other models and crops. However, a challenge has been identified, which is associated with the appropriate assumption of the model errors, where a combination of various calibration approaches might be essential to have a more robust parameter estimation

    Stress coefficients for soil water balance combined with water stress indicators for irrigation scheduling of woody crops

    Get PDF
    Concept PaperThere are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI) crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET), and accurate stress coefficient (Ks) values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody cropsinfo:eu-repo/semantics/publishedVersio

    MY SIRR: Minimalist agro-hYdrological model for Sustainable IRRigation management—Soil moisture and crop dynamics

    Get PDF
    The paper introduces a minimalist water-driven crop model for sustainable irrigation management using an eco-hydrological approach. Such model, called MY SIRR, uses a relatively small number of parameters and attempts to balance simplicity, accuracy, and robustness. MY SIRR is a quantitative tool to assess water requirements and agricultural production across different climates, soil types, crops, and irrigation strategies. The MY SIRR source code is published under copyleft license. The FOSS approach could lower the financial barriers of smallholders, especially in developing countries, in the utilization of tools for better decision-making on the strategies for short- and long-term water resource management. Keywords: Irrigation management, Soil moisture, Crop dynamics, Agro-hydrolog

    Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    Get PDF
    Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates) and one at a global scale (water balances across an aridity gradient in the continental USA), are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest ecosystems, where sparse roots in the capillary fringe contribute a significant proportion of the water uptake during extended dry periods. The results of the second case study suggest that uncompensated models may give biased estimates of long-term evapotranspiration at the continental scale. In the example presented here, the uncompensated model underestimated total evapotranspiration by 5–7% in climates of intermediate aridity, while the ratio of transpiration to evaporation was also smaller than for the compensated model, especially in arid climates. It is concluded that the parsimonious physics-based model concepts described here may be useful in the context of eco-hydrological modeling at local, regional and global scales

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.Application of different irrigation management practices plays a considerable role in water saving to achieve potential yields. On the other hand, network water distribution schedule is a governing factor in this regard. In current study conducted in Mahabad plain in North West of Iran, four different irrigation managements on sugarbeet cultivation including traditional farmer's management, Furrow Deepening, Reduced Discharge per Deepened Furrow, and Alternate Furrow Irrigation have been studied in real farmers' fields measuring 10.2 hectares. Participatory management approach has been used while working in farmers' fields. Soils textures are silty clayey. Results of studies indicate that water used has been reduced considerably while higher root and sugar yields are obtained due to better on-farm water management practices. Water Use Efficiency, in kg of yield per m3 of water used, increased considerably under alternate furrow irrigation management in comparison to what obtained under traditional management. Results show application of alternate furrow irrigation in sugarbeet cultivation not only resulted in lesser water use per hectare, but also it increased both root and sugar yields and, consequently, higher water use efficiency was obtained. Assessments have been made on irrigation schedule imposed by the irrigation network and its effects on actual water requirements. Results show that the delivery schedule practiced in the network in incapable of delivering the actual amount of water requirement for the dominant crop of the scheme. Suggestions are made to the network operator to improve overall network efficiency including revisions on water resources planning and allocation and/or improve network operation system

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Salt management is a critical component of irrigated agriculture in arid regions. Successful crop production cannot be sustained without maintaining an acceptable level of salinity in the root zone. This requires drainage and a location to dispose drainage water, particularly, the salts it contains, which degrade the quality of receiving water bodies. Despite the need to generate drainage water to sustain productivity, many irrigation schemes have been designed and constructed with insufficient attention to drainage, to appropriate re-use or disposal of saline drainage water, and to salt disposal in general. To control the negative effects of drainage water disposal, state and federal agencies in several countries now are placing regulations on the discharge of saline drainage water into rivers. As a result, many farmers have implemented irrigation and crop management practices that reduce drainage volumes. Farmers and technical specialists also are examining water treatment schemes to remove salt or dispose of saline drainage water in evaporation basins or in underlying groundwater. We propose that the responsibility for salt management be combined with the irrigation rights of farmers. This approach will focus farmers' attention on salt management and motivate water delivery agencies and farmers to seek efficient methods for reducing the amount of salt needing disposal and to determine methods of disposing salt in ways that are environmentally acceptable

    USCID Fourth international conference on irrigation and drainage

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.Integrated regional water management -- Change of irrigation water quantity according to farm mechanization and land consolidation in Korea -- Local stakeholders participation for small scale water resources management in Bangladesh -- Water user participation in Egypt -- The man swimming against the stream knows the strength of it -- Roles and issues of Water Users' Associations for Sustainable Irrigation and Drainage in the Kyrgyz Republic and Uzbekistan in Central Asia -- Chartered Water User Associations of Afghanistan -- Updated procedures for calculating state-wide consumptive use in Idaho -- Measuring and estimating open water evaporation in Elephant Butte Reservoir in New Mexico -- Evapotranspiration of deficit irrigated sorghum and winter wheat -- Evaluation of a two-layer model to estimate actual evapotranspiration for vineyards -- Estimating pecan water use through remote sensing in Lower Rio Grande -- Estimating crop water use from remotely sensed NDVI, crop models, and reference ET -- Alfalfa production using saline drainage water -- Performance evaluation of subsurface drainage system under unsteady state flow conditions in coastal saline soils of Andhrapradesh, India -- Management strategies for the reuse of wastewater in Jordan -- Providing recycled water for crop irrigation and other uses in Gilroy, California -- Oakdale Irrigation District Water Resources Plan -- Use of information technology to support integrated water resources management implementation -- Decision-support systems for efficient irrigation in the Middle Rio Grande -- Salt management -- Ghazi Barotha Project on Indus River in Pakistan -- Field tests of OSIRI -- Water requirements, irrigation evaluation and efficiency in Tenerife's crops (Canary Islands, Spain) -- Using wireless technology to reduce water use in rice production -- Variability of crop coefficients in space and time -- Assessing the implementation of integrated water management approach in closed basins -- New strategies of donors in the irrigation sector of Africa -- Holistic perspective for investments in agricultural drainage in Egypt -- Mapping system and services for canal operation techniques -- An open channel network modernization with automated structures -- Canal control alternatives in the irrigation district 'Sector BXII del Bajo Guadalquivir,' Spain -- Hydrodynamic behavior of a canal network under simultaneous supply and demand based operations -- Simulation on the effect of microtopography spatial variability on basin irrigation performance -- Drip irrigation as a sustainable practice under saline shallow ground water conditions -- Water retention, compaction and bean yield in different soil managements under a center pivot system -- Precision mechanical move irrigation for smallholding farmers -- Wild flood to graded border irrigation for water and energy conservation in the Klamath basin -- A method describing precise water application intensity under a CPIS from a limited number of measurements -- An irrigation sustainability assessment framework for reporting across the environmental-economic-social spectrum -- Planning for future irrigation landscapes -- One size does not fit all -- Water information networks -- Improving water use efficiency -- Irrigation system modernization in the Middle Rio Grande Valley -- Relationship of operation stability and automatic operation control methods of open canal -- Responsive strategies of agricultural water sector in Taiwan -- Effect of network water distribution schedule and different on-farm water management practices on sugarbeet water use efficiency -- Variable Frequency Drive (VFD) considerations for irrigation -- Accuracy of radar water level measurements -- Transition submergence and hysteresis effects in three-foot Cutthroat flumes -- Practical irrigation flow measurement and control -- Linear anionic PAM as a canal water seepage reducing technology -- In-situ non-destructive monitoring of water flow in damaged agricultural pipeline by AE -- Reoptimizing global irrigation systems to restore floodplain ecosystems and human livelihoods -- Water management technologies for sustainable agriculture in Kenya -- Impacts of changing rice irrigation practices on the shallow aquifer of Nasunogahara basin, Japan -- Drought protection from an in-lieu groundwater banking program -- Development of agricultural drought evaluation system in Korea -- Bean yield and root development in different soil managements under a center pivot system -- Can frost damage impact water demand for crop production in the future? -- Real time water delivery management and planning in irrigation and drainage networks -- Growth response of palm trees to the frequency of irrigation by bubblers in Khuzestan, Iran -- Application of Backpropagation Neural Network to estimate evapotranspiration for ChiaNan irrigated area, Taiwan -- Increasing water and fertilizer use efficiency through rain gun sprinkler irrigation in sugar cane agriculture
    • …
    corecore