66 research outputs found

    Computing With Distributed Information

    Get PDF
    The age of computing with massive data sets is highlighting new computational challenges. Nowadays, a typical server may not be able to store an entire data set, and thus data is often partitioned and stored on multiple servers in a distributed manner. A natural way of computing with such distributed data is to use distributed algorithms: these are algorithms where the participating parties (i.e., the servers holding portions of the data) collaboratively compute a function over the entire data set by sending (preferably small-size) messages to each other, where the computation performed at each participating party only relies on the data possessed by it and the messages received by it. We study distributed algorithms focused on two key themes: convergence time and data summarization. Convergence time measures how quickly a distributed algorithm settles on a globally stable solution, and data summarization is the approach of creating a compact summary of the input data while retaining key information. The latter often leads to more efficient computation and communication. The main focus of this dissertation is on design and analysis of distributed algorithms for important problems in diverse application domains centering on the themes of convergence time and data summarization. Some of the problems we study include convergence time of double oral auction and interdomain routing, summarizing graphs for large-scale matching problems, and summarizing data for query processing

    Input Secrecy & Output Privacy: Efficient Secure Computation of Differential Privacy Mechanisms

    Get PDF
    Data is the driving force of modern businesses. For example, customer-generated data is collected by companies to improve their products, discover emerging trends, and provide insights to marketers. However, data might contain personal information which allows to identify a person and violate their privacy. Examples of privacy violations are abundant – such as revealing typical whereabout and habits, financial status, or health information, either directly or indirectly by linking the data to other available data sources. To protect personal data and regulate its collection and processing, the general data protection regulation (GDPR) was adopted by all members of the European Union. Anonymization addresses such regulations and alleviates privacy concerns by altering personal data to hinder identification. Differential privacy (DP), a rigorous privacy notion for anonymization mechanisms, is widely deployed in the industry, e.g., by Google, Apple, and Microsoft. Additionally, cryptographic tools, namely, secure multi-party computation (MPC), protect the data during processing. MPC allows distributed parties to jointly compute a function over their data such that only the function output is revealed but none of the input data. MPC and DP provide orthogonal protection guarantees. MPC provides input secrecy, i.e., MPC protects the inputs of a computation via encrypted processing. DP provides output privacy, i.e., DP anonymizes the output of a computation via randomization. In typical deployments of DP the data is randomized locally, i.e., by each client, and aggregated centrally by a server. MPC allows to apply the randomization centrally as well, i.e., only once, which is optimal for accuracy. Overall, MPC and DP augment each other nicely. However, universal MPC is inefficient – requiring large computation and communication overhead – which makes MPC of DP mechanisms challenging for general real-world deployments. In this thesis, we present efficient MPC protocols for distributed parties to collaboratively compute DP statistics with high accuracy. We support general rank-based statistics, e.g., min, max, median, as well as decomposable aggregate functions, where local evaluations can be efficiently combined to global ones, e.g., for convex optimizations. Furthermore, we detect heavy hitters, i.e., most frequently appearing values, over known as well as unknown data domains. We prove the semi-honest security and differential privacy of our protocols. Also, we theoretically analyse and empirically evaluate their accuracy as well as efficiency. Our protocols provide higher accuracy than comparable solutions based on DP alone. Our protocols are efficient, with running times of seconds to minutes evaluated in real-world WANs between Frankfurt and Ohio (100 ms delay, 100 Mbits/s bandwidth), and have modest hardware requirements compared to related work (mainly, 4 CPU cores at 3.3 GHz and 2 GB RAM per party). Additionally, our protocols can be outsourced, i.e., clients can send encrypted inputs to few servers which run the MPC protocol on their behalf

    Deep Visual Instruments: Realtime Continuous, Meaningful Human Control over Deep Neural Networks for Creative Expression

    Get PDF
    In this thesis, we investigate Deep Learning models as an artistic medium for new modes of performative, creative expression. We call these Deep Visual Instruments: realtime interactive generative systems that exploit and leverage the capabilities of state-of-the-art Deep Neural Networks (DNN), while allowing Meaningful Human Control, in a Realtime Continuous manner. We characterise Meaningful Human Control in terms of intent, predictability, and accountability; and Realtime Continuous Control with regards to its capacity for performative interaction with immediate feedback, enhancing goal-less exploration. The capabilities of DNNs that we are looking to exploit and leverage in this manner, are their ability to learn hierarchical representations modelling highly complex, real-world data such as images. Thinking of DNNs as tools that extract useful information from massive amounts of Big Data, we investigate ways in which we can navigate and explore what useful information a DNN has learnt, and how we can meaningfully use such a model in the production of artistic and creative works, in a performative, expressive manner. We present five studies that approach this from different but complementary angles. These include: a collaborative, generative sketching application using MCTS and discriminative CNNs; a system to gesturally conduct the realtime generation of text in different styles using an ensemble of LSTM RNNs; a performative tool that allows for the manipulation of hyperparameters in realtime while a Convolutional VAE trains on a live camera feed; a live video feed processing software that allows for digital puppetry and augmented drawing; and a method that allows for long-form story telling within a generative model's latent space with meaningful control over the narrative. We frame our research with the realtime, performative expression provided by musical instruments as a metaphor, in which we think of these systems as not used by a user, but played by a performer

    A Multivariate Approach to Functional Neuro Modeling

    Get PDF
    This Ph.D. thesis, A Multivariate Approach to Functional Neuro Modeling, deals with the analysis and modeling of data from functional neuro imaging experiments. A multivariate dataset description is provided which facilitates efficient representation of typical datasets and, more importantly, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: ffl An introduction of the representation of functional datasets by pairs of neuronal activity patterns and overall conditions governing the functional experiment, via associated micro- and macroscopic variables. The description facilitates an efficient microscopic re-representation, as well as a handle on the link between brain and behavior; the latter is obtained by hypothesizing variations in the micro- and macroscopic variables to be manifestations of an underlying system. ffl A review of two micros..

    Fortifying robustness: unveiling the intricacies of training and inference vulnerabilities in centralized and federated neural networks

    Get PDF
    Neural network (NN) classifiers have gained significant traction in diverse domains such as natural language processing, computer vision, and cybersecurity, owing to their remarkable ability to approximate complex latent distributions from data. Nevertheless, the conventional assumption of an attack-free operating environment has been challenged by the emergence of adversarial examples. These perturbed samples, which are typically imperceptible to human observers, can lead to misclassifications by the NN classifiers. Moreover, recent studies have uncovered the ability of poisoned training data to generate Trojan backdoored classifiers that exhibit misclassification behavior triggered by predefined patterns. In recent years, significant research efforts have been dedicated to uncovering the vulnerabilities of NN classifiers and developing defenses or mitigations against them. However, the existing approaches still fall short of providing mature solutions to address this ever-evolving problem. The widely adopted defense mechanisms against adversarial examples are computationally expensive and impractical for certain real-world applications. Likewise, the practical black-box defense against Trojan backdoors has failed to achieve state-of-the-art performance. More concerning is the limited exploration of these vulnerabilities within the context of cooperative attack or Federated learning, leaving NN classifiers exposed to unknown risks. This dissertation aims to address these critical gaps and refine our understanding of these vulnerabilities. The research conducted within this dissertation encompasses both the attack and defense perspectives, aiming to shed light on future research directions for vulnerabilities in NN classifiers

    Autonomy in the real real-world: A behaviour based view of autonomous systems control in an industrial product inspection system

    Get PDF
    The thesis presented in this dissertation appears in two sequential parts that arose from an exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain outside that of robotics, where BBAI is most frequently used. The work details a real-world physical implementation of the control and interactions of an industrial product inspection system from a BBAI perspective. It concentrates particularly on the control of a number of active laser scanning sensor systems (each a subsystem of a larger main inspection system), using a subsumption architecture. This industrial implementation is in itself a new direction for BBAI control and an important aspect of this thesis. However, the work has also led on to the development of a number of key ideas which contribute to the field of BBAI in general. The second part of the thesis concerns the nature of physical and temporal constraints on a distributed control system and the desirability of utilising mechanisms to provide continuous, low-level learning and adaptation of domain knowledge on a sub-behavioural basis. Techniques used include artificial neural networks and hill-climbing state-space search algorithms. Discussion is supported with examples from experiments with the laser scanning inspection system. Encouraging results suggest that concerted design effort at this low level of activity will benefit the whole system in terms of behavioural robustness and reliability. Relevant aspects of the design process that should be of value in similar real-world projects are identified and emphasised. These issues are particularly important in providing a firm foundation for artificial intelligence based control systems

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica. Universidade do Porto. Faculdade de Engenharia. 201
    • …
    corecore