26,616 research outputs found

    How many double squares can a string contain?

    Full text link
    Counting the types of squares rather than their occurrences, we consider the problem of bounding the number of distinct squares in a string. Fraenkel and Simpson showed in 1998 that a string of length n contains at most 2n distinct squares. Ilie presented in 2007 an asymptotic upper bound of 2n - Theta(log n). We show that a string of length n contains at most 5n/3 distinct squares. This new upper bound is obtained by investigating the combinatorial structure of double squares and showing that a string of length n contains at most 2n/3 double squares. In addition, the established structural properties provide a novel proof of Fraenkel and Simpson's result.Comment: 29 pages, 20 figure

    Time reversal invariant gapped boundaries of the double semion state

    Get PDF
    The boundary of a fractionalized topological phase can be gapped by condensing a proper set of bosonic quasiparticles. Interestingly, in the presence of a global symmetry, such a boundary can have different symmetry transformation properties. Here we present an explicit example of this kind, in the double semion state with time reversal symmetry. We find two distinct cases where the semionic excitations on the boundary can transform either as time reversal singlets or as time reversal (Kramers) doublets, depending on the coherent phase factor of the Bose condensate. The existence of these two possibilities are demonstrated using both field theory argument and exactly solvable lattice models. Furthermore, we study the domain walls between these two types of gapped boundaries and find that the application of time reversal symmetry tunnels a semion between them.Comment: 11 pages, 8 figure
    corecore