18,570 research outputs found

    An analytical framework for the performance evaluation of proximity-aware structured overlays

    Get PDF
    In this paper, we present an analytical study of proximity-aware structured peer-to-peer networks under churn. We use a master-equation-based approach, which is used traditionally in non-equilibrium statistical mechanics to describe steady-state or transient phenomena. In earlier work we have demonstrated that this methodology is in fact also well suited to describing structured overlay networks under churn, by showing how we can accurately predict the average number of hops taken by a lookup, for any value of churn, for the Chord system. In this paper, we extend the analysis so as to also be able to predict lookup latency, given an average latency for the links in the network. Our results show that there exists a region in the parameter space of the model, depending on churn, the number of nodes, the maintenance rates and the delays in the network, when the network cannot function as a small world graph anymore, due to the farthest connections of a node always being wrong or dead. We also demonstrate how it is possible to analyse proximity neighbour selection or proximity route selection within this formalism

    JamBot: Music Theory Aware Chord Based Generation of Polyphonic Music with LSTMs

    Full text link
    We propose a novel approach for the generation of polyphonic music based on LSTMs. We generate music in two steps. First, a chord LSTM predicts a chord progression based on a chord embedding. A second LSTM then generates polyphonic music from the predicted chord progression. The generated music sounds pleasing and harmonic, with only few dissonant notes. It has clear long-term structure that is similar to what a musician would play during a jam session. We show that our approach is sensible from a music theory perspective by evaluating the learned chord embeddings. Surprisingly, our simple model managed to extract the circle of fifths, an important tool in music theory, from the dataset.Comment: Paper presented at the 29th International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, US

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    A psychoacoustic model of harmonic cadences: a preliminary report

    Get PDF
    This report presents a psychoacoustically derived computational model of the perceived distance between any two major or minor triads, the degree of activity created by any given pair of triads, and the cadential effectiveness of three-triad progressions. It also provides statistical analyses of the ratings given by thirty-five participants for the "similarity" and "fit" of triads in a pair, and the "cadential effectiveness" of three-triad progressions. Multiple regressions show that the model provides highly significant predictions of the experimentally obtained ratings. Finally, it is argued that because the model is based upon psychoacoustic axioms, it is likely the regression equations represent true causal models. As such, the computational model and its associated theory question the plausibility of theoretical approaches to tonality that use only long-term memory and statistical features, as well as those approaches based upon symmetrical geometrical structures like the torus. It is hoped that the psychoacoustic approach proposed here may herald not only the return of psychoacoustic approaches to tonal music theory, but also the exploration of the tonal possibilities offered by non-standard tunings and non-harmonic timbres
    corecore