314,621 research outputs found

    Quantum Hall Transition in the Classical Limit

    Full text link
    We study the quantum Hall transition using the density-density correlation function. We show that in the limit h->0 the electron density moves along the percolating trajectories, undergoing normal diffusion. The localization exponent coincides with its percolation value \nu=4/3. The framework provides a natural way to study the renormalization group flow from percolation to quantum Hall transition. We also confirm numerically that the critical conductivity of a classical limit of quantum Hall transition is \sigma_{xx} = \sqrt{3}/4.Comment: 8 pages, 4 figures; substantial changes include the critical conductivity calculatio

    Path integrals and symmetry breaking for optimal control theory

    Get PDF
    This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schr\"odinger equation. As a result of the linearity, the usual backward computation can be replaced by a forward diffusion process, that can be computed by stochastic integration or by the evaluation of a path integral. It is shown, how in the deterministic limit the PMP formalism is recovered. The significance of the path integral approach is that it forms the basis for a number of efficient computational methods, such as MC sampling, the Laplace approximation and the variational approximation. We show the effectiveness of the first two methods in number of examples. Examples are given that show the qualitative difference between stochastic and deterministic control and the occurrence of symmetry breaking as a function of the noise.Comment: 21 pages, 6 figures, submitted to JSTA

    Explicit generation of the branching tree of states in spin glasses

    Full text link
    We present a numerical method to generate explicit realizations of the tree of states in mean-field spin glasses. The resulting study illuminates the physical meaning of the full replica symmetry breaking solution and provides detailed information on the structure of the spin-glass phase. A cavity approach ensures that the method is self-consistent and permits the evaluation of sophisticated observables, such as correlation functions. We include an example application to the study of finite-size effects in single-sample overlap probability distributions, a topic that has attracted considerable interest recently.Comment: Version accepted for publication in JSTA

    Gravity as an emergent phenomenon: a GFT perspective

    Full text link
    While the idea of gravity as an emergent phenomenon is an intriguing one, little is known about concrete implementations that could lead to viable phenomenology, most of the obstructions being related to the intrinsic difficulties of formulating genuinely pregeometric theories. In this paper we present a preliminary discussion of the impact of critical behavior of certain microscopic models for gravity, based on group field theories, on the dynamics of the macroscopic regime. The continuum limit is examined in light of some scaling assumption, and the relevant consequences for low energy effective theories are discussed, the role of universality, the corrections to scaling, the emergence of gravitational theories and the nature of their thermodynamical behavior.Comment: 1+26 page
    • …
    corecore