19 research outputs found

    Good approximate quantum LDPC codes from spacetime circuit Hamiltonians

    Get PDF
    We study approximate quantum low-density parity-check (QLDPC) codes, which are approximate quantum error-correcting codes specified as the ground space of a frustration-free local Hamiltonian, whose terms do not necessarily commute. Such codes generalize stabilizer QLDPC codes, which are exact quantum error-correcting codes with sparse, low-weight stabilizer generators (i.e. each stabilizer generator acts on a few qubits, and each qubit participates in a few stabilizer generators). Our investigation is motivated by an important question in Hamiltonian complexity and quantum coding theory: do stabilizer QLDPC codes with constant rate, linear distance, and constant-weight stabilizers exist? We show that obtaining such optimal scaling of parameters (modulo polylogarithmic corrections) is possible if we go beyond stabilizer codes: we prove the existence of a family of [[N,k,d,ฮต]][[N,k,d,\varepsilon]] approximate QLDPC codes that encode k=ฮฉ~(N)k = \widetilde{\Omega}(N) logical qubits into NN physical qubits with distance d=ฮฉ~(N)d = \widetilde{\Omega}(N) and approximation infidelity ฮต=O(1/polylog(N))\varepsilon = \mathcal{O}(1/\textrm{polylog}(N)). The code space is stabilized by a set of 10-local noncommuting projectors, with each physical qubit only participating in O(polylogN)\mathcal{O}(\textrm{polylog} N) projectors. We prove the existence of an efficient encoding map, and we show that arbitrary Pauli errors can be locally detected by circuits of polylogarithmic depth. Finally, we show that the spectral gap of the code Hamiltonian is ฮฉ~(Nโˆ’3.09)\widetilde{\Omega}(N^{-3.09}) by analyzing a spacetime circuit-to-Hamiltonian construction for a bitonic sorting network architecture that is spatially local in polylog(N)\textrm{polylog}(N) dimensions.Comment: 51 pages, 13 figure

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunรคchst das Phรคnomen von Metastabilitรคt in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir prรคsentieren ein zeit- und wertdiskretes Modell fรผr Metastabilitรคt in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren prรคsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilitรคt mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzufรผhren und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darรผber hinaus zeigen wir, dass durch Maskingregister in zusรคtzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lรถsen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. AbschlieรŸend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wรคchterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und prรคsentieren eine effiziente Implementierung, die es lรถst

    Size Bounds on Low Depth Circuits for Promise Majority

    Get PDF

    Instantaneous non-local computation of low T-depth quantum circuits

    Get PDF

    Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    Get PDF
    Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient constructions are known for very specific cases only. We partially close this gap by presenting new schemes for efficient instantaneous non-local computation of several classes of quantum circuits, using the Clifford+T gate set. Our main result is a protocol which uses entanglement exponential in the T-depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication complexity which was recently introduced as a tool for studying certain schemes for quantum position verification. As an application of our results, we also present an efficient attack on a recently-proposed scheme for position verification by Chakraborty and Leverrier

    Compressibility-Aware Quantum Algorithms on Strings

    Full text link
    Sublinear time quantum algorithms have been established for many fundamental problems on strings. This work demonstrates that new, faster quantum algorithms can be designed when the string is highly compressible. We focus on two popular and theoretically significant compression algorithms -- the Lempel-Ziv77 algorithm (LZ77) and the Run-length-encoded Burrows-Wheeler Transform (RL-BWT), and obtain the results below. We first provide a quantum algorithm running in O~(zn)\tilde{O}(\sqrt{zn}) time for finding the LZ77 factorization of an input string T[1..n]T[1..n] with zz factors. Combined with multiple existing results, this yields an O~(rn)\tilde{O}(\sqrt{rn}) time quantum algorithm for finding the RL-BWT encoding with rr BWT runs. Note that r=ฮ˜~(z)r = \tilde{\Theta}(z). We complement these results with lower bounds proving that our algorithms are optimal (up to polylog factors). Next, we study the problem of compressed indexing, where we provide a O~(rn)\tilde{O}(\sqrt{rn}) time quantum algorithm for constructing a recently designed O~(r)\tilde{O}(r) space structure with equivalent capabilities as the suffix tree. This data structure is then applied to numerous problems to obtain sublinear time quantum algorithms when the input is highly compressible. For example, we show that the longest common substring of two strings of total length nn can be computed in O~(zn)\tilde{O}(\sqrt{zn}) time, where zz is the number of factors in the LZ77 factorization of their concatenation. This beats the best known O~(n23)\tilde{O}(n^\frac{2}{3}) time quantum algorithm when zz is sufficiently small

    ๊ทผ์‚ฌ ์—ฐ์‚ฐ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ ๊ฒ€์ฆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2020. 2. ์ฒœ์ •ํฌ.Verifiable Computing (VC) is a complexity-theoretic method to secure the integrity of computations. The need is increasing as more computations are outsourced to untrusted parties, e.g., cloud platforms. Existing techniques, however, have mainly focused on exact computations, but not approximate arithmetic, e.g., floating-point or fixed-point arithmetic. This makes it hard to apply them to certain types of computations (e.g., machine learning, data analysis, and scientific computation) that inherently require approximate arithmetic. In this thesis, we present an efficient interactive proof system for arithmetic circuits with rounding gates that can represent approximate arithmetic. The main idea is to represent the rounding gate into a small sub-circuit, and reuse the machinery of the Goldwasser, Kalai, and Rothblum's protocol (also known as the GKR protocol) and its recent refinements. Specifically, we shift the algebraic structure from a field to a ring to better deal with the notion of ``digits'', and generalize the original GKR protocol over a ring. Then, we represent the rounding operation by a low-degree polynomial over a ring, and develop a novel, optimal circuit construction of an arbitrary polynomial to transform the rounding polynomial to an optimal circuit representation. Moreover, we further optimize the proof generation cost for rounding by employing a Galois ring. We provide experimental results that show the efficiency of our system for approximate arithmetic. For example, our implementation performed two orders of magnitude better than the existing system for a nested 128 x 128 matrix multiplication of depth 12 on the 16-bit fixed-point arithmetic.๊ณ„์‚ฐ๊ฒ€์ฆ ๊ธฐ์ˆ ์€ ๊ณ„์‚ฐ์˜ ๋ฌด๊ฒฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ด๋ก ์  ๋ฐฉ๋ฒ•์ด๋‹ค. ์ตœ๊ทผ ๋งŽ์€ ๊ณ„์‚ฐ์ด ํด๋ผ์šฐ๋“œ ํ”Œ๋žซํผ๊ณผ ๊ฐ™์€ ์ œ3์ž์—๊ฒŒ ์™ธ์ฃผ๋จ์— ๋”ฐ๋ผ ๊ทธ ํ•„์š”์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๊ณ„์‚ฐ๊ฒ€์ฆ ๊ธฐ์ˆ ์€ ๋น„๊ทผ์‚ฌ ์—ฐ์‚ฐ๋งŒ์„ ๊ณ ๋ คํ–ˆ์„ ๋ฟ, ๊ทผ์‚ฌ ์—ฐ์‚ฐ (๋ถ€๋™ ์†Œ์ˆ˜์  ๋˜๋Š” ๊ณ ์ • ์†Œ์ˆ˜์  ์—ฐ์‚ฐ)์€ ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ์งˆ์ ์œผ๋กœ ๊ทผ์‚ฌ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•œ ํŠน์ • ์œ ํ˜•์˜ ๊ณ„์‚ฐ (๊ธฐ๊ณ„ ํ•™์Šต, ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๊ณผํ•™ ๊ณ„์‚ฐ ๋“ฑ)์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋ฐ˜์˜ฌ๋ฆผ ๊ฒŒ์ดํŠธ๋ฅผ ์ˆ˜๋ฐ˜ํ•˜๋Š” ์‚ฐ์ˆ  ํšŒ๋กœ๋ฅผ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๋Œ€ํ™”ํ˜• ์ฆ๋ช… ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฐ์ˆ  ํšŒ๋กœ๋Š” ๊ทผ์‚ฌ ์—ฐ์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ทผ์‚ฌ ์—ฐ์‚ฐ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๊ณ„์‚ฐ ๊ฒ€์ฆ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ฃผ์š” ์•„์ด๋””์–ด๋Š” ๋ฐ˜์˜ฌ๋ฆผ ๊ฒŒ์ดํŠธ๋ฅผ ์ž‘์€ ํšŒ๋กœ๋กœ ๋ณ€ํ™˜ํ•œ ํ›„, ์—ฌ๊ธฐ์— Goldwasser, Kalai, ๋ฐ Rothblum์˜ ํ”„๋กœํ† ์ฝœ (GKR ํ”„๋กœํ† ์ฝœ)๊ณผ ์ตœ๊ทผ์˜ ๊ฐœ์„ ์„ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋Œ€์ˆ˜์  ๊ฐ์ฒด๋ฅผ ์œ ํ•œ์ฒด๊ฐ€ ์•„๋‹Œ ``์ˆซ์ž''๋ฅผ ๋ณด๋‹ค ์ž˜ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜์œผ๋กœ ์น˜ํ™˜ํ•œ ํ›„, ํ™˜ ์œ„์—์„œ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก ๊ธฐ์กด์˜ GKR ํ”„๋กœํ† ์ฝœ์„ ์ผ๋ฐ˜ํ™”ํ•˜์˜€๋‹ค. ์ดํ›„, ๋ฐ˜์˜ฌ๋ฆผ ์—ฐ์‚ฐ์„ ํ™˜์—์„œ ์ฐจ์ˆ˜๊ฐ€ ๋‚ฎ์€ ๋‹คํ•ญ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ , ๋‹คํ•ญ์‹ ์—ฐ์‚ฐ์„ ์ตœ์ ์˜ ํšŒ๋กœ ํ‘œํ˜„์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ์ƒˆ๋กญ๊ณ  ์ตœ์ ํ™”๋œ ํšŒ๋กœ ๊ตฌ์„ฑ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐˆ๋ฃจ์•„ ํ™˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ˜์˜ฌ๋ฆผ์„ ์œ„ํ•œ ์ฆ๋ช… ์ƒ์„ฑ ๋น„์šฉ์„ ๋”์šฑ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์‹คํ—˜์„ ํ†ตํ•ด ์šฐ๋ฆฌ์˜ ๊ทผ์‚ฌ ์—ฐ์‚ฐ ๊ฒ€์ฆ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์šฐ๋ฆฌ์˜ ์‹œ์Šคํ…œ์€ ๊ตฌํ˜„ ์‹œ, 16 ๋น„ํŠธ ๊ณ ์ • ์†Œ์ˆ˜์  ์—ฐ์‚ฐ์„ ํ†ตํ•œ ๊นŠ์ด 12์˜ ๋ฐ˜๋ณต๋œ 128 x 128 ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ๊ฒ€์ฆ์— ์žˆ์–ด ๊ธฐ์กด ์‹œ์Šคํ…œ๋ณด๋‹ค ์•ฝ 100๋ฐฐ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.1 Introduction 1 1.1 Verifiable Computing 2 1.2 Verifiable Approximate Arithmetic 3 1.2.1 Problem: Verification of Rounding Arithmetic 3 1.2.2 Motivation: Verifiable Machine Learning (AI) 4 1.3 List of Papers 5 2 Preliminaries 6 2.1 Interactive Proof and Argument 6 2.2 Sum-Check Protocol 7 2.3 The GKR Protocol 10 2.4 Notation and Cost Model 14 3 Related Work 15 3.1 Interactive Proofs 15 3.2 (Non-)Interactive Arguments 17 4 Interactive Proof for Rounding Arithmetic 20 4.1 Overview of Our Approach and Result 20 4.2 Interactive Proof over a Ring 26 4.2.1 Sum-Check Protocol over a Ring 27 4.2.2 The GKR Protocol over a Ring 29 4.3 Verifiable Rounding Operation 31 4.3.1 Lowest-Digit-Removal Polynomial over Z_{p^e} 32 4.3.2 Verification of Division-by-p Layer 33 4.4 Delegation of Polynomial Evaluation in Optimal Cost 34 4.4.1 Overview of Our Circuit Construction 35 4.4.2 Our Circuit for Polynomial Evaluation 37 4.4.3 Cost Analysis 40 4.5 Cost Optimization 45 4.5.1 Galois Ring over Z_{p^e} and a Sampling Set 45 4.5.2 Optimization of Prover's Cost for Rounding Layers 47 5 Experimental Results 50 5.1 Experimental Setup 50 5.2 Verifiable Rounding Operation 51 5.2.1 Effectiveness of Optimization via Galois Ring 51 5.2.2 Efficiency of Verifiable Rounding Operation 53 5.3 Comparison to Thaler's Refinement of GKR Protocol 54 5.4 Discussion 57 6 Conclusions 60 6.1 Towards Verifiable AI 61 6.2 Verifiable Cryptographic Computation 62 Abstract (in Korean) 74Docto

    Efficient Quantum State Synthesis with One Query

    Full text link
    We present a polynomial-time quantum algorithm making a single query (in superposition) to a classical oracle, such that for every state โˆฃฯˆโŸฉ|\psi\rangle there exists a choice of oracle that makes the algorithm construct an exponentially close approximation of โˆฃฯˆโŸฉ|\psi\rangle. Previous algorithms for this problem either used a linear number of queries and polynomial time [arXiv:1607.05256], or a constant number of queries and polynomially many ancillae but no nontrivial bound on the runtime [arXiv:2111.02999]. As corollaries we do the following: - We simplify the proof that statePSPACE โŠ†\subseteq stateQIP [arXiv:2108.07192] (a quantum state analogue of PSPACE โŠ†\subseteq IP) and show that a constant number of rounds of interaction suffices. - We show that QACf0\mathsf{_f^0} lower bounds for constructing explicit states would imply breakthrough circuit lower bounds for computing explicit boolean functions. - We prove that every nn-qubit state can be constructed to within 0.01 error by an O(2n/n)O(2^n/n)-size circuit over an appropriate finite gate set. More generally we give a size-error tradeoff which, by a counting argument, is optimal for any finite gate set.Comment: 39 page

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    The Computational Power of Non-interacting Particles

    Full text link
    Shortened abstract: In this thesis, I study two restricted models of quantum computing related to free identical particles. Free fermions correspond to a set of two-qubit gates known as matchgates. Matchgates are classically simulable when acting on nearest neighbors on a path, but universal for quantum computing when acting on distant qubits or when SWAP gates are available. I generalize these results in two ways. First, I show that SWAP is only one in a large family of gates that uplift matchgates to quantum universality. In fact, I show that the set of all matchgates plus any nonmatchgate parity-preserving two-qubit gate is universal, and interpret this fact in terms of local invariants of two-qubit gates. Second, I investigate the power of matchgates in arbitrary connectivity graphs, showing they are universal on any connected graph other than a path or a cycle, and classically simulable on a cycle. I also prove the same dichotomy for the XY interaction. Free bosons give rise to a model known as BosonSampling. BosonSampling consists of (i) preparing a Fock state of n photons, (ii) interfering these photons in an m-mode linear interferometer, and (iii) measuring the output in the Fock basis. Sampling approximately from the resulting distribution should be classically hard, under reasonable complexity assumptions. Here I show that exact BosonSampling remains hard even if the linear-optical circuit has constant depth. I also report several experiments where three-photon interference was observed in integrated interferometers of various sizes, providing some of the first implementations of BosonSampling in this regime. The experiments also focus on the bosonic bunching behavior and on validation of BosonSampling devices. This thesis contains descriptions of the numerical analyses done on the experimental data, omitted from the corresponding publications.Comment: PhD Thesis, defended at Universidade Federal Fluminense on March 2014. Final version, 208 pages. New results in Chapter 5 correspond to arXiv:1106.1863, arXiv:1207.2126, and arXiv:1308.1463. New results in Chapter 6 correspond to arXiv:1212.2783, arXiv:1305.3188, arXiv:1311.1622 and arXiv:1412.678
    corecore