37 research outputs found

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Bag-of-words representations for computer audition

    Get PDF
    Computer audition is omnipresent in everyday life, in applications ranging from personalised virtual agents to health care. From a technical point of view, the goal is to robustly classify the content of an audio signal in terms of a defined set of labels, such as, e.g., the acoustic scene, a medical diagnosis, or, in the case of speech, what is said or how it is said. Typical approaches employ machine learning (ML), which means that task-specific models are trained by means of examples. Despite recent successes in neural network-based end-to-end learning, taking the raw audio signal as input, models relying on hand-crafted acoustic features are still superior in some domains, especially for tasks where data is scarce. One major issue is nevertheless that a sequence of acoustic low-level descriptors (LLDs) cannot be fed directly into many ML algorithms as they require a static and fixed-length input. Moreover, also for dynamic classifiers, compressing the information of the LLDs over a temporal block by summarising them can be beneficial. However, the type of instance-level representation has a fundamental impact on the performance of the model. In this thesis, the so-called bag-of-audio-words (BoAW) representation is investigated as an alternative to the standard approach of statistical functionals. BoAW is an unsupervised method of representation learning, inspired from the bag-of-words method in natural language processing, forming a histogram of the terms present in a document. The toolkit openXBOW is introduced, enabling systematic learning and optimisation of these feature representations, unified across arbitrary modalities of numeric or symbolic descriptors. A number of experiments on BoAW are presented and discussed, focussing on a large number of potential applications and corresponding databases, ranging from emotion recognition in speech to medical diagnosis. The evaluations include a comparison of different acoustic LLD sets and configurations of the BoAW generation process. The key findings are that BoAW features are a meaningful alternative to statistical functionals, offering certain benefits, while being able to preserve the advantages of functionals, such as data-independence. Furthermore, it is shown that both representations are complementary and their fusion improves the performance of a machine listening system.Maschinelles Hören ist im täglichen Leben allgegenwärtig, mit Anwendungen, die von personalisierten virtuellen Agenten bis hin zum Gesundheitswesen reichen. Aus technischer Sicht besteht das Ziel darin, den Inhalt eines Audiosignals hinsichtlich einer Auswahl definierter Labels robust zu klassifizieren. Die Labels beschreiben bspw. die akustische Umgebung der Aufnahme, eine medizinische Diagnose oder - im Falle von Sprache - was gesagt wird oder wie es gesagt wird. Übliche Ansätze hierzu verwenden maschinelles Lernen, d.h., es werden anwendungsspezifische Modelle anhand von Beispieldaten trainiert. Trotz jüngster Erfolge beim Ende-zu-Ende-Lernen mittels neuronaler Netze, in welchen das unverarbeitete Audiosignal als Eingabe benutzt wird, sind Modelle, die auf definierten akustischen Merkmalen basieren, in manchen Bereichen weiterhin überlegen. Dies gilt im Besonderen für Einsatzzwecke, für die nur wenige Daten vorhanden sind. Allerdings besteht dabei das Problem, dass Zeitfolgen von akustischen Deskriptoren in viele Algorithmen des maschinellen Lernens nicht direkt eingespeist werden können, da diese eine statische Eingabe fester Länge benötigen. Außerdem kann es auch für dynamische (zeitabhängige) Klassifikatoren vorteilhaft sein, die Deskriptoren über ein gewisses Zeitintervall zusammenzufassen. Jedoch hat die Art der Merkmalsdarstellung einen grundlegenden Einfluss auf die Leistungsfähigkeit des Modells. In der vorliegenden Dissertation wird der sogenannte Bag-of-Audio-Words-Ansatz (BoAW) als Alternative zum Standardansatz der statistischen Funktionale untersucht. BoAW ist eine Methode des unüberwachten Lernens von Merkmalsdarstellungen, die von der Bag-of-Words-Methode in der Computerlinguistik inspiriert wurde, bei der ein Textdokument als Histogramm der vorkommenden Wörter beschrieben wird. Das Toolkit openXBOW wird vorgestellt, welches systematisches Training und Optimierung dieser Merkmalsdarstellungen - vereinheitlicht für beliebige Modalitäten mit numerischen oder symbolischen Deskriptoren - erlaubt. Es werden einige Experimente zum BoAW-Ansatz durchgeführt und diskutiert, die sich auf eine große Zahl möglicher Anwendungen und entsprechende Datensätze beziehen, von der Emotionserkennung in gesprochener Sprache bis zur medizinischen Diagnostik. Die Auswertungen beinhalten einen Vergleich verschiedener akustischer Deskriptoren und Konfigurationen der BoAW-Methode. Die wichtigsten Erkenntnisse sind, dass BoAW-Merkmalsvektoren eine geeignete Alternative zu statistischen Funktionalen darstellen, gewisse Vorzüge bieten und gleichzeitig wichtige Eigenschaften der Funktionale, wie bspw. die Datenunabhängigkeit, erhalten können. Zudem wird gezeigt, dass beide Darstellungen komplementär sind und eine Fusionierung die Leistungsfähigkeit eines Systems des maschinellen Hörens verbessert

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Towards the automated analysis of simple polyphonic music : a knowledge-based approach

    Get PDF
    PhDMusic understanding is a process closely related to the knowledge and experience of the listener. The amount of knowledge required is relative to the complexity of the task in hand. This dissertation is concerned with the problem of automatically decomposing musical signals into a score-like representation. It proposes that, as with humans, an automatic system requires knowledge about the signal and its expected behaviour to correctly analyse music. The proposed system uses the blackboard architecture to combine the use of knowledge with data provided by the bottom-up processing of the signal's information. Methods are proposed for the estimation of pitches, onset times and durations of notes in simple polyphonic music. A method for onset detection is presented. It provides an alternative to conventional energy-based algorithms by using phase information. Statistical analysis is used to create a detection function that evaluates the expected behaviour of the signal regarding onsets. Two methods for multi-pitch estimation are introduced. The first concentrates on the grouping of harmonic information in the frequency-domain. Its performance and limitations emphasise the case for the use of high-level knowledge. This knowledge, in the form of the individual waveforms of a single instrument, is used in the second proposed approach. The method is based on a time-domain linear additive model and it presents an alternative to common frequency-domain approaches. Results are presented and discussed for all methods, showing that, if reliably generated, the use of knowledge can significantly improve the quality of the analysis.Joint Information Systems Committee (JISC) in the UK National Science Foundation (N.S.F.) in the United states. Fundacion Gran Mariscal Ayacucho in Venezuela

    Stochastic suprasegmentals: relationships between redundancy, prosodic structure and care of articulation in spontaneous speech

    Get PDF
    Within spontaneous speech there are wide variations in the articulation of the same word by the same speaker. This paper explores two related factors which influence variation in articulation, prosodic structure and redundancy. We argue that the constraint of producing robust communication while efficiently expending articulatory effort leads to an inverse relationship between language redundancy and care of articulation. The inverse relationship improves robustness by spreading the information more evenly across the speech signal leading to a smoother signal redundancy profile. We argue that prosodic prominence is a linguistic means of achieving smooth signal redundancy. Prosodic prominence increases care of articulation and coincides with unpredictable sections of speech. By doing so, prosodic prominence leads to a smoother signal redundancy. Results confirm the strong relationship between prosodic prominence and care of articulation as well as an inverse relationship between langu..

    Towards the Automatic Analysis of Metric Modulations

    Get PDF
    PhDThe metrical structure is a fundamental aspect of music, yet its automatic analysis from audio recordings remains one of the great challenges of Music Information Retrieval (MIR) research. This thesis is concerned with addressing the automatic analysis of changes of metrical structure over time, i.e. metric modulations. The evaluation of automatic musical analysis methods is a critical element of the MIR research and is typically performed by comparing the machine-generated estimates with human expert annotations, which are used as a proxy for ground truth. We present here two new datasets of annotations for the evaluation of metrical structure and metric modulation estimation systems. Multiple annotations allowed for the assessment of inter-annotator (dis)agreement, thereby allowing for an evaluation of the reference annotations used to evaluate the automatic systems. The rhythmogram has been identified in previous research as a feature capable of capturing characteristics of rhythmic content of a music recording. We present here a direct evaluation of its ability to characterise the metrical structure and as a result we propose a method to explicitly extract metrical structure descriptors from it. Despite generally good and increasing performance, such rhythm features extraction systems occasionally fail. When unpredictable, the failures are a barrier to usability and development of trust in MIR systems. In a bid to address this issue, we then propose a method to estimate the reliability of rhythm features extraction. Finally, we propose a two-fold method to automatically analyse metric modulations from audio recordings. On the one hand, we propose a method to detect metrical structure changes from the rhythmogram feature in an unsupervised fashion. On the other hand, we propose a metric modulations taxonomy rooted in music theory that relies on metrical structure descriptors that can be automatically estimated. Bringing these elements together lays the ground for the automatic production of a musicological interpretation of metric modulations.EPSRC award 1325200 and Omnifone Ltd

    Applications of Dynamical Systems to Music Composition

    Get PDF
    Mathematics and music have long enjoyed a close working relationship: mathematicians have frequently taken an interest in the organisational principles used in music, while musicians often utilise mathematical formalisms and structures in their works. This relationship has thrived in recent years, particularly since the advent of the computer, which has allowed mathematicians and musicians alike to explore the creative aspects of various mathematical structures quickly and easily. One class of mathematical structure that is of particular interest to the technologically-minded musician is the class of dynamical systems - those that change some feature with time. This class includes fractal zooms, evolutionary computing techniques and cellular automata, each of which holds some potential as the basis of a composition algorithm. The studies that comprise this thesis were undertaken in order to further examine the relationship between mathematics and music. In particular we explore the notion that music can essentially be thought of as a type of pattern propagation: we begin with initial themes and motifs - the musical patterns - which, during the course of the composition, are subjected to certain transformations and developments according to the rules dictated by the composer or the musical form. This is exactly analogous to the process which occurs within a cellular automaton: initial configurations of cells are transformed and developed according to a set of evolution rules. We begin our study by describing the development of the CAMUS v2.0 composition software, which was based on an earlier system by Dr. Eduardo Miranda, and discuss how best to use the system to compose new musical works. The next step in our study is concerned with highlighting the limitations of CAMUS as it currently stands, and suggesting techniques for improving the capabilities of the system. We then chart the development of CAMUS 3D. At each stage we justify the changes made to the system using both aesthetic and technical arguments. We also provide a composition example, which illustrates not only the changes in operation, but also in interface. The system is then re-evaluated, and further developments are suggested

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.
    corecore