314 research outputs found

    Simulation modelling and visualisation: toolkits for building artificial worlds

    Get PDF
    Simulations users at all levels make heavy use of compute resources to drive computational simulations for greatly varying applications areas of research using different simulation paradigms. Simulations are implemented in many software forms, ranging from highly standardised and general models that run in proprietary software packages to ad hoc hand-crafted simulations codes for very specific applications. Visualisation of the workings or results of a simulation is another highly valuable capability for simulation developers and practitioners. There are many different software libraries and methods available for creating a visualisation layer for simulations, and it is often a difficult and time-consuming process to assemble a toolkit of these libraries and other resources that best suits a particular simulation model. We present here a break-down of the main simulation paradigms, and discuss differing toolkits and approaches that different researchers have taken to tackle coupled simulation and visualisation in each paradigm

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform

    Full text link
    [EN] To provide complex and elaborated functionalities, Microservices may cooperate with each other either by following a centralized (orchestration) or decentralized (choreography) approach. It seems that the decentralized nature of microservices makes the choreography approach more appropriate to achieve such cooperation, where lighter solutions based on events and message queues are used. However, orchestration through the usage of a process model facilitates the analysis of the composition when this is modified. To benefit from the goodness of these two approaches, this paper presents a hybrid solution based on the choreography of business process pieces that are obtained from a previously defined description of the complete microservice composition. To support this solution, the EUCalipTool platform is presented.This work has been developed with the financial support of the Spanish State Research Agency under the project TIN2017-84094-R and co-financed with ERDF.Valderas, P.; Torres Bosch, MV.; Pelechano Ferragud, V. (2020). Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform. Journal of Software Engineering Research and Development. 8(1):1-14. https://doi.org/10.5753/jserd.2020.457S1148

    Algorithmic skeleton framework for the orchestration of GPU computations

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the Central Processing Unit (CPU), due to its ability to surpass the latter’s performance in certain application fields. Nonetheless, harnessing the GPU’s capabilities is a non-trivial exercise that requires good knowledge of parallel programming. Thus, providing ways to extract such computational power has become an emerging research topic. In this context, there have been several proposals in the field of GPGPU (Generalpurpose Computation on Graphics Processing Unit) development. However, most of these still offer a low-level abstraction of the GPU computing model, forcing the developer to adapt application computations in accordance with the SPMD model, as well as to orchestrate the low-level details of the execution. On the other hand, the higher-level approaches have limitations that prevent the full exploitation of GPUs when the purpose goes beyond the simple offloading of a kernel. To this extent, our proposal builds on the recent trend of applying the notion of algorithmic patterns (skeletons) to GPU computing. We propose Marrow, a high-level algorithmic skeleton framework that expands the set of skeletons currently available in this field. Marrow’s skeletons orchestrate the execution of OpenCL computations and introduce optimizations that overlap communication and computation, thus conjoining programming simplicity with performance gains in many application scenarios. Additionally, these skeletons can be combined (nested) to create more complex applications. We evaluated the proposed constructs by confronting them against the comparable skeleton libraries for GPGPU, as well as against hand-tuned OpenCL programs. The results are favourable, indicating that Marrow’s skeletons are both flexible and efficient in the context of GPU computing.FCT-MCTES - financing the equipmen
    • …
    corecore