6,790 research outputs found

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Sparse reduced-rank regression for imaging genetics studies: models and applications

    Get PDF
    We present a novel statistical technique; the sparse reduced rank regression (sRRR) model which is a strategy for multivariate modelling of high-dimensional imaging responses and genetic predictors. By adopting penalisation techniques, the model is able to enforce sparsity in the regression coefficients, identifying subsets of genetic markers that best explain the variability observed in subsets of the phenotypes. To properly exploit the rich structure present in each of the imaging and genetics domains, we additionally propose the use of several structured penalties within the sRRR model. Using simulation procedures that accurately reflect realistic imaging genetics data, we present detailed evaluations of the sRRR method in comparison with the more traditional univariate linear modelling approach. In all settings considered, we show that sRRR possesses better power to detect the deleterious genetic variants. Moreover, using a simple genetic model, we demonstrate the potential benefits, in terms of statistical power, of carrying out voxel-wise searches as opposed to extracting averages over regions of interest in the brain. Since this entails the use of phenotypic vectors of enormous dimensionality, we suggest the use of a sparse classification model as a de-noising step, prior to the imaging genetics study. Finally, we present the application of a data re-sampling technique within the sRRR model for model selection. Using this approach we are able to rank the genetic markers in order of importance of association to the phenotypes, and similarly rank the phenotypes in order of importance to the genetic markers. In the very end, we illustrate the application perspective of the proposed statistical models in three real imaging genetics datasets and highlight some potential associations

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Online Deep Metric Learning

    Full text link
    Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.Comment: 9 page

    Scalable Population Synthesis with Deep Generative Modeling

    Full text link
    Population synthesis is concerned with the generation of synthetic yet realistic representations of populations. It is a fundamental problem in the modeling of transport where the synthetic populations of micro-agents represent a key input to most agent-based models. In this paper, a new methodological framework for how to 'grow' pools of micro-agents is presented. The model framework adopts a deep generative modeling approach from machine learning based on a Variational Autoencoder (VAE). Compared to the previous population synthesis approaches, including Iterative Proportional Fitting (IPF), Gibbs sampling and traditional generative models such as Bayesian Networks or Hidden Markov Models, the proposed method allows fitting the full joint distribution for high dimensions. The proposed methodology is compared with a conventional Gibbs sampler and a Bayesian Network by using a large-scale Danish trip diary. It is shown that, while these two methods outperform the VAE in the low-dimensional case, they both suffer from scalability issues when the number of modeled attributes increases. It is also shown that the Gibbs sampler essentially replicates the agents from the original sample when the required conditional distributions are estimated as frequency tables. In contrast, the VAE allows addressing the problem of sampling zeros by generating agents that are virtually different from those in the original data but have similar statistical properties. The presented approach can support agent-based modeling at all levels by enabling richer synthetic populations with smaller zones and more detailed individual characteristics.Comment: 27 pages, 15 figures, 4 table
    • …
    corecore