430 research outputs found

    Transforming High School Physics With Modeling And Computation

    Get PDF
    The Engage to Excel (PCAST) report, the National Research Council\u27s Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation\u27s ability for connecting scientific practice to the high school science classroom

    CS in Schools Evaluation: An industry-school partnership supporting secondary teachers to teach computer programming

    Get PDF
    The aim of this document is to evaluate the pilot of the CS in Schools initiative. This evaluation provides information about the delivery and implementation of the CS in Schools pilot, considering the perspectives and values of different stakeholders, including teachers and industry volunteers. The document also examines the aims of the CS in Schools program, including factors that act as barriers or facilitators of the program and identifies ways to potentially improve the efficacy of the program. A key aim of the CS in Schools program is to help high school teachers develop their confidence and competence in teaching computer science. In our evaluation, there was evidence to indicate that teachers in the study typically increased their self-efficacy to teach computer programming, with the support offered in the program commonly acting as a kind scaffold for in-service teachers develop their skills and knowledge of coding language and programming. Teachers generally held positive views of the pre-designed resources-inclusive of its scope, clarity and alignment with the curriculum. Moreover, they also frequently liked the in-classroom immediate access to expertise from industry volunteers. This element of CS in Schools speaks to the untapped value of industry-school partnerships in an effective, contemporary STEM education school syllabus. Conversely, some teachers in the study viewed the explicit pedagogy, which mostly underpins the design of the CS in Schools teaching resources, did not align with the pedagogical philosophies they espoused or wanted to facilitate in their learning environment. Other teachers commented that particularly for more advanced students, that the pacing constrained some students in the pilot. Teachers’ lack of familiarly with the content was another concern raised by participates. In relation to the industry volunteers, there was often an altruistic element to their underlying motivations to volunteer in CS in Schools, together with a perception that was a lag or deficit in the use of digital technology in schools and what industry trends. Other motivations for some to participate in the program included an eagerness for a professional challenge and the potential to network with others. Addressing several barriers such as network hardware, software configuration and platforms (e.g. firewalls, password access/ management) in addition to adapting the program to align with individual school needs (e.g. timetables, educator expertise) is likely to improve the efficacy of the CS in Schools program. As the CS in Schools initiative is in its relative infancy, it’s expected that this document will be useful for future iterations of the program and may helpful in addressing perceived areas of improvement and informing future directions of the initiative

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers

    Student success model in programming course: A case study in UUM

    Get PDF
    The complexity and difficulty ascribed to computer programming has been asserted to be the causes of its high rate of failure record and attrition. It is opined that programming either to novice, middle learner, and the self-branded geeks is always a course to be apprehensive of different studies with varying findings. Studies on factors leading to the success of programming course in higher institution have been carried out. The record at Universiti Utara Malaysia (UUM) shows that 38% of semester one undergraduate students failed the programming course in 2013. This really motivates this study, which aims at investigating the practical factors affecting the success of programming courses, and to position its’ theoretically findings to complement the existing findings. Data were gathered using a quantitative approach, in which a set of questionnaire were distributed to 282 sampled respondents, who are undergraduate and postgraduate students of Information Technology (IT) and Information and Communication Technology (ICT). Having screened and cleaned the data, which led to the deletion of four outlier records, independent T-test, correlation, and regression were run to test the hypotheses. The results of Pearson correlation test reveal that teaching tools, OOP concepts, motivation, course evaluation, and mathematical aptitude are positively related to academic success in programming course, while fear is found to be negatively related. In addition, the regression analysis explains that all the elicited independent variables except fear are strongly related. Besides, the independent T-test also discovers no deference between groups with and without previous programming experience

    Utilizing educational technology in computer science and programming courses : theory and practice

    Get PDF
    There is one thing the Computer Science Education researchers seem to agree: programming is a difficult skill to learn. Educational technology can potentially solve a number of difficulties associated with programming and computer science education by automating assessment, providing immediate feedback and by gamifying the learning process. Still, there are two very important issues to solve regarding the use of technology: what tools to use, and how to apply them? In this thesis, I present a model for successfully adapting educational technology to computer science and programming courses. The model is based on several years of studies conducted while developing and utilizing an exercise-based educational tool in various courses. The focus of the model is in improving student performance, measured by two easily quantifiable factors: the pass rate of the course and the average grade obtained from the course. The final model consists of five features that need to be considered in order to adapt technology effectively into a computer science course: active learning and continuous assessment, heterogeneous exercise types, electronic examination, tutorial-based learning, and continuous feedback cycle. Additionally, I recommend that student mentoring is provided and cognitive load of adapting the tools considered when applying the model. The features are classified as core components, supportive components or evaluation components based on their role in the complete model. Based on the results, it seems that adapting the complete model can increase the pass rate statistically significantly and provide higher grades when compared with a “traditional” programming course. The results also indicate that although adapting the model partially can create some improvements to the performance, all features are required for the full effect to take place. Naturally, there are some limits in the model. First, I do not consider it as the only possible model for adapting educational technology into programming or computer science courses. Second, there are various other factors in addition to students’ performance for creating a satisfying learning experience that need to be considered when refactoring courses. Still, the model presented can provide significantly better results, and as such, it works as a base for future improvements in computer science education.Ohjelmoinnin oppimisen vaikeus on yksi harvoja asioita, joista lähes kaikki tietojenkäsittelyn opetuksen tutkijat ovat jokseenkin yksimielisiä. Opetusteknologian avulla on mahdollista ratkaista useita ohjelmoinnin oppimiseen liittyviä ongelmia esimerkiksi hyödyntämällä automaattista arviointia, välitöntä palautetta ja pelillisyyttä. Teknologiaan liittyy kuitenkin kaksi olennaista kysymystä: mitä työkaluja käyttää ja miten ottaa ne kursseilla tehokkaasti käyttöön? Tässä väitöskirjassa esitellään malli opetusteknologian tehokkaaseen hyödyntämiseen tietojenkäsittelyn ja ohjelmoinnin kursseilla. Malli perustuu tehtäväpohjaisen oppimisjärjestelmän runsaan vuosikymmenen pituiseen kehitys- ja tutkimusprosessiin. Mallin painopiste on opiskelijoiden suoriutumisen parantamisessa. Tätä arvioidaan kahdella kvantitatiivisella mittarilla: kurssin läpäisyprosentilla ja arvosanojen keskiarvolla. Malli koostuu viidestä tekijästä, jotka on otettava huomioon tuotaessa opetusteknologiaa ohjelmoinnin kursseille. Näitä ovat aktiivinen oppiminen ja jatkuva arviointi, heterogeeniset tehtävätyypit, sähköinen tentti, tutoriaalipohjainen oppiminen sekä jatkuva palautesykli. Lisäksi opiskelijamentoroinnin järjestäminen kursseilla ja järjestelmän käyttöönottoon liittyvän kognitiivisen kuorman arviointi tukevat mallin käyttöä. Malliin liittyvät tekijät on tässä työssä lajiteltu kolmeen kategoriaan: ydinkomponentteihin, tukikomponentteihin ja arviontiin liittyviin komponentteihin. Tulosten perusteella vaikuttaa siltä, että mallin käyttöönotto parantaa kurssien läpäisyprosenttia tilastollisesti merkittävästi ja nostaa arvosanojen keskiarvoa ”perinteiseen” kurssimalliin verrattuna. Vaikka mallin yksittäistenkin ominaisuuksien käyttöönotto voi sinällään parantaa kurssin tuloksia, väitöskirjaan kuuluvien tutkimusten perusteella näyttää siltä, että parhaat tulokset saavutetaan ottamalla malli käyttöön kokonaisuudessaan. On selvää, että malli ei ratkaise kaikkia opetusteknologian käyttöönottoon liittyviä kysymyksiä. Ensinnäkään esitetyn mallin ei ole tarkoituskaan olla ainoa mahdollinen tapa hyödyntää opetusteknologiaa ohjelmoinnin ja tietojenkäsittelyn kursseilla. Toiseksi tyydyttävään oppimiskokemukseen liittyy opiskelijoiden suoriutumisen lisäksi paljon muitakin tekijöitä, jotka tulee huomioida kurssien uudelleensuunnittelussa. Esitetty malli mahdollistaa kuitenkin merkittävästi parempien tulosten saavuttamisen kursseilla ja tarjoaa sellaisena perustan entistä parempaan opetukseen

    Computing in Education: A study of computing in education and ways to enhance students’ perceptions and understanding of computing

    Get PDF
    There is a huge demand for computing skills in industry due to computing becoming ubiquitous and essential for modern life. Yet despite this, industry struggles to find employees with suitable computing skills and similarly Further and Higher Education institutions have observed a lack of interest in their computing courses in recent years. This study looks at possible reasons for this lack of interest in computing, how computing is taught in education and ways to improve students’ perceptions and understanding of computing. It focuses around a case study of a university outreach event for secondary schools which investigated how interactive teaching methods can be used to enhance students’ perceptions and understanding of computing and to increase their computing knowledge. It includes the use of physical computing and was designed to make computing fun, motivational and relevant, and to provide examples of real-world applications. Surveys were used before and after the event to understand what students’ impressions and knowledge of computing is and to see if the event improved these. Observations were also used to see how well the students handled the event’s content and whether they appeared to enjoy and understand it. Results from the case study indicate that interactive teaching methods enhance computing education, and physical computing with electronics can enhance lessons and show the relevance of computing with examples of real-world applications, and can be fun and motivational. The case study provides teachers with example tasks and challenges they can use with their students and/or ideas around other interactive teaching methods including practical computing

    Re-designing Design and Technology Education: A living literature review of stakeholder perspectives

    Get PDF
    Created following the amalgamation of several individual subject disciplines, in England, design and technology is in decline. Debates about its purpose and position have taken place since its inception but arguably these have not transferred into a rigorous research base. There is a growing body of scholars exploring the field, but with the decline of the subject, so the community working and investigating it is also diminished. Without a strong foundation, the actions of the few may not carry sufficient weight to generate full and meaningful debate that would influence those with the power to change policy on curriculum and lead to innovation. If we are to have any hope of reversing the subject’s deterioration, we must do something bold and significant. While an awareness of the subject’s history and its evolution is integral to our understanding of how and why we are where we are, merely reflecting on the past will do little to help the subject move forward. Hence, the principal aim of our research is to explore what a re-designed design and technology could look like. To achieve this, this study draws on different stakeholders’ visions of how they perceive the subject’s future

    Microcredentials to support PBL

    Get PDF
    • …
    corecore