20,232 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Impact of Correlated Mobility on Delay-Throughput Performance in Mobile Ad-Hoc Networks

    Get PDF
    Abstract—We extend the analysis of the scaling laws of wireless ad hoc networks to the case of correlated nodes movements, which are commonly found in real mobility processes. We consider a simple version of the Reference Point Group Mobility model, in which nodes belonging to the same group are constrained to lie in a disc area, whose center moves uniformly across the network according to the i.i.d. model. We assume fast mobility conditions, and take as primary goal the maximization of pernode throughput. We discover that correlated node movements have huge impact on asymptotic throughput and delay, and can sometimes lead to better performance than the one achievable under independent nodes movements. I. INTRODUCTION AND RELATED WORK In the last few years the store-carry-forward communication paradigm, which allows nodes to physically carry buffered dat

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    Mobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum "virtual cache" assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60-85% of cache hits compared to the 30-40% obtained by the existing schemes and 10% in case of no coalition

    On the Throughput-Delay Trade-off in Georouting Networks

    Get PDF
    We study the scaling properties of a georouting scheme in a wireless multi-hop network of nn mobile nodes. Our aim is to increase the network capacity quasi linearly with nn while keeping the average delay bounded. In our model, mobile nodes move according to an i.i.d. random walk with velocity vv and transmit packets to randomly chosen destinations. The average packet delivery delay of our scheme is of order 1/v1/v and it achieves the network capacity of order nlog⁥nlog⁥log⁥n\frac{n}{\log n\log\log n}. This shows a practical throughput-delay trade-off, in particular when compared with the seminal result of Gupta and Kumar which shows network capacity of order n/log⁥n\sqrt{n/\log n} and negligible delay and the groundbreaking result of Grossglausser and Tse which achieves network capacity of order nn but with an average delay of order n/v\sqrt{n}/v. We confirm the generality of our analytical results using simulations under various interference models.Comment: This work has been submitted to IEEE INFOCOM 201

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Context-based Pseudonym Changing Scheme for Vehicular Adhoc Networks

    Get PDF
    Vehicular adhoc networks allow vehicles to share their information for safety and traffic efficiency. However, sharing information may threaten the driver privacy because it includes spatiotemporal information and is broadcast publicly and periodically. In this paper, we propose a context-adaptive pseudonym changing scheme which lets a vehicle decide autonomously when to change its pseudonym and how long it should remain silent to ensure unlinkability. This scheme adapts dynamically based on the density of the surrounding traffic and the user privacy preferences. We employ a multi-target tracking algorithm to measure privacy in terms of traceability in realistic vehicle traces. We use Monte Carlo analysis to estimate the quality of service (QoS) of a forward collision warning application when vehicles apply this scheme. According to the experimental results, the proposed scheme provides a better compromise between traceability and QoS than a random silent period scheme.Comment: Extended version of a previous paper "K. Emara, W. Woerndl, and J. Schlichter, "Poster: Context-Adaptive User-Centric Privacy Scheme for VANET," in Proceedings of the 11th EAI International Conference on Security and Privacy in Communication Networks, SecureComm'15. Dallas, TX, USA: Springer, June 2015.
    • 

    corecore