43,706 research outputs found

    Data intensive scientific analysis with grid computing

    Get PDF
    At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research

    Impacts of International Research on Intertemporal Yield Stability in Wheat and Maize: An Economic Assessment

    Get PDF
    Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,

    AAPOR Report on Big Data

    Get PDF
    In recent years we have seen an increase in the amount of statistics in society describing different phenomena based on so called Big Data. The term Big Data is used for a variety of data as explained in the report, many of them characterized not just by their large volume, but also by their variety and velocity, the organic way in which they are created, and the new types of processes needed to analyze them and make inference from them. The change in the nature of the new types of data, their availability, the way in which they are collected, and disseminated are fundamental. The change constitutes a paradigm shift for survey research.There is a great potential in Big Data but there are some fundamental challenges that have to be resolved before its full potential can be realized. In this report we give examples of different types of Big Data and their potential for survey research. We also describe the Big Data process and discuss its main challenges

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate
    corecore