11,701 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Sistema de bloqueio de computadores

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaThe use of multiple computing devices per person is increasing more and more. Nowadays is normal that mobile devices like smartphones, tablets and laptops are present in the everyday life of a single person and in many cases people use these devices to perform important operations related with their professional life. This also presents a problem, as these devices come with the user in everyday life and the fact that often they have a high monetary value means that these devices are susceptible to theft. This thesis introduces a computer locking system that distinguishes itself from existing similar systems because (i) it is designed to work independently of the Operating System(s) installed on the laptop or mobile device, (ii) depends on a firrmware driver that implements the lock operation making it resistant to storage device formats or any other attack that uses software operations. It is also explored the operation of a device that has a firrmware that follows the Unified Extensible Firmware Interface (UEFI) specification as well as the development of drivers for this type of firrmware. It was also developed a security protocol and various cryptographic techniques where explored and implemented.O uso de vários dispositivos computacionais por pessoa está a aumentar cada vez mais. Hoje em dia é normal dispositivos móveis como o smartphone, tablet e computador portátil estarem presentes no quotidiano das pessoas e em muitos casos as pessoas necessitam de realizar tarefas na sua vida profissional nestes dispositivos. Isto apresenta também um problema, como estes dispositivos acompanham o utilizador no dia a dia e pelo facto de muitas vezes terem um valor monetário elevado faz com que estes dispositivos sejam suscetíveis a roubos. Esta tese introduz um sistema de bloqueio de computadores que se distingue dos sistemas similares existentes porque, (i) _e desenhado para funcionar independentemente do(s) sistema(s) operativo(s) instalado(s) no computador portátil ou no dispositivo móvel, (ii) depende de um driver do firrmware que concretiza a operação de bloqueio fazendo com que seja resistente contra formatação do dispositivo de armazenamento ou qualquer outro ataque que tenho por base a utilização de software. É explorado então o funcionamento de um dispositivo que tenha um firmware que respeita a especificação Unfied Extensible Firmware Interface (UEFI) assim como a programação de drivers para este tipo de firmware. Foi também desenvolvido um protocolo de segurança e são exploradas várias técnicas criptográficas passiveis de serem implementadas

    The Viability and Potential Consequences of IoT-Based Ransomware

    Get PDF
    With the increased threat of ransomware and the substantial growth of the Internet of Things (IoT) market, there is significant motivation for attackers to carry out IoT-based ransomware campaigns. In this thesis, the viability of such malware is tested. As part of this work, various techniques that could be used by ransomware developers to attack commercial IoT devices were explored. First, methods that attackers could use to communicate with the victim were examined, such that a ransom note was able to be reliably sent to a victim. Next, the viability of using "bricking" as a method of ransom was evaluated, such that devices could be remotely disabled unless the victim makes a payment to the attacker. Research was then performed to ascertain whether it was possible to remotely gain persistence on IoT devices, which would improve the efficacy of existing ransomware methods, and provide opportunities for more advanced ransomware to be created. Finally, after successfully identifying a number of persistence techniques, the viability of privacy-invasion based ransomware was analysed. For each assessed technique, proofs of concept were developed. A range of devices -- with various intended purposes, such as routers, cameras and phones -- were used to test the viability of these proofs of concept. To test communication hijacking, devices' "channels of communication" -- such as web services and embedded screens -- were identified, then hijacked to display custom ransom notes. During the analysis of bricking-based ransomware, a working proof of concept was created, which was then able to remotely brick five IoT devices. After analysing the storage design of an assortment of IoT devices, six different persistence techniques were identified, which were then successfully tested on four devices, such that malicious filesystem modifications would be retained after the device was rebooted. When researching privacy-invasion based ransomware, several methods were created to extract information from data sources that can be commonly found on IoT devices, such as nearby WiFi signals, images from cameras, or audio from microphones. These were successfully implemented in a test environment such that ransomable data could be extracted, processed, and stored for later use to blackmail the victim. Overall, IoT-based ransomware has not only been shown to be viable but also highly damaging to both IoT devices and their users. While the use of IoT-ransomware is still very uncommon "in the wild", the techniques demonstrated within this work highlight an urgent need to improve the security of IoT devices to avoid the risk of IoT-based ransomware causing havoc in our society. Finally, during the development of these proofs of concept, a number of potential countermeasures were identified, which can be used to limit the effectiveness of the attacking techniques discovered in this PhD research

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Technical Dimensions of Programming Systems

    Get PDF
    Programming requires much more than just writing code in a programming language. It is usually done in the context of a stateful environment, by interacting with a system through a graphical user interface. Yet, this wide space of possibilities lacks a common structure for navigation. Work on programming systems fails to form a coherent body of research, making it hard to improve on past work and advance the state of the art. In computer science, much has been said and done to allow comparison of programming languages, yet no similar theory exists for programming systems; we believe that programming systems deserve a theory too. We present a framework of technical dimensions which capture the underlying characteristics of programming systems and provide a means for conceptualizing and comparing them. We identify technical dimensions by examining past influential programming systems and reviewing their design principles, technical capabilities, and styles of user interaction. Technical dimensions capture characteristics that may be studied, compared and advanced independently. This makes it possible to talk about programming systems in a way that can be shared and constructively debated rather than relying solely on personal impressions. Our framework is derived using a qualitative analysis of past programming systems. We outline two concrete ways of using our framework. First, we show how it can analyze a recently developed novel programming system. Then, we use it to identify an interesting unexplored point in the design space of programming systems. Much research effort focuses on building programming systems that are easier to use, accessible to non-experts, moldable and/or powerful, but such efforts are disconnected. They are informal, guided by the personal vision of their authors and thus are only evaluable and comparable on the basis of individual experience using them. By providing foundations for more systematic research, we can help programming systems researchers to stand, at last, on the shoulders of giants

    Genomic prediction in plants: opportunities for ensemble machine learning based approaches [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Background: Many studies have demonstrated the utility of machine learning (ML) methods for genomic prediction (GP) of various plant traits, but a clear rationale for choosing ML over conventionally used, often simpler parametric methods, is still lacking. Predictive performance of GP models might depend on a plethora of factors including sample size, number of markers, population structure and genetic architecture. Methods: Here, we investigate which problem and dataset characteristics are related to good performance of ML methods for genomic prediction. We compare the predictive performance of two frequently used ensemble ML methods (Random Forest and Extreme Gradient Boosting) with parametric methods including genomic best linear unbiased prediction (GBLUP), reproducing kernel Hilbert space regression (RKHS), BayesA and BayesB. To explore problem characteristics, we use simulated and real plant traits under different genetic complexity levels determined by the number of Quantitative Trait Loci (QTLs), heritability (h2 and h2e), population structure and linkage disequilibrium between causal nucleotides and other SNPs. Results: Decision tree based ensemble ML methods are a better choice for nonlinear phenotypes and are comparable to Bayesian methods for linear phenotypes in the case of large effect Quantitative Trait Nucleotides (QTNs). Furthermore, we find that ML methods are susceptible to confounding due to population structure but less sensitive to low linkage disequilibrium than linear parametric methods. Conclusions: Overall, this provides insights into the role of ML in GP as well as guidelines for practitioners

    Generalized Relation Modeling for Transformer Tracking

    Full text link
    Compared with previous two-stream trackers, the recent one-stream tracking pipeline, which allows earlier interaction between the template and search region, has achieved a remarkable performance gain. However, existing one-stream trackers always let the template interact with all parts inside the search region throughout all the encoder layers. This could potentially lead to target-background confusion when the extracted feature representations are not sufficiently discriminative. To alleviate this issue, we propose a generalized relation modeling method based on adaptive token division. The proposed method is a generalized formulation of attention-based relation modeling for Transformer tracking, which inherits the merits of both previous two-stream and one-stream pipelines whilst enabling more flexible relation modeling by selecting appropriate search tokens to interact with template tokens. An attention masking strategy and the Gumbel-Softmax technique are introduced to facilitate the parallel computation and end-to-end learning of the token division module. Extensive experiments show that our method is superior to the two-stream and one-stream pipelines and achieves state-of-the-art performance on six challenging benchmarks with a real-time running speed.Comment: Accepted by CVPR 2023. Code and models are publicly available at https://github.com/Little-Podi/GR

    The determinants of value addition: a crtitical analysis of global software engineering industry in Sri Lanka

    Get PDF
    It was evident through the literature that the perceived value delivery of the global software engineering industry is low due to various facts. Therefore, this research concerns global software product companies in Sri Lanka to explore the software engineering methods and practices in increasing the value addition. The overall aim of the study is to identify the key determinants for value addition in the global software engineering industry and critically evaluate the impact of them for the software product companies to help maximise the value addition to ultimately assure the sustainability of the industry. An exploratory research approach was used initially since findings would emerge while the study unfolds. Mixed method was employed as the literature itself was inadequate to investigate the problem effectively to formulate the research framework. Twenty-three face-to-face online interviews were conducted with the subject matter experts covering all the disciplines from the targeted organisations which was combined with the literature findings as well as the outcomes of the market research outcomes conducted by both government and nongovernment institutes. Data from the interviews were analysed using NVivo 12. The findings of the existing literature were verified through the exploratory study and the outcomes were used to formulate the questionnaire for the public survey. 371 responses were considered after cleansing the total responses received for the data analysis through SPSS 21 with alpha level 0.05. Internal consistency test was done before the descriptive analysis. After assuring the reliability of the dataset, the correlation test, multiple regression test and analysis of variance (ANOVA) test were carried out to fulfil the requirements of meeting the research objectives. Five determinants for value addition were identified along with the key themes for each area. They are staffing, delivery process, use of tools, governance, and technology infrastructure. The cross-functional and self-organised teams built around the value streams, employing a properly interconnected software delivery process with the right governance in the delivery pipelines, selection of tools and providing the right infrastructure increases the value delivery. Moreover, the constraints for value addition are poor interconnection in the internal processes, rigid functional hierarchies, inaccurate selections and uses of tools, inflexible team arrangements and inadequate focus for the technology infrastructure. The findings add to the existing body of knowledge on increasing the value addition by employing effective processes, practices and tools and the impacts of inaccurate applications the same in the global software engineering industry
    corecore