891,888 research outputs found

    Towards a quantum evolutionary scheme: violating Bell's inequalities in language

    Get PDF
    We show the presence of genuine quantum structures in human language. The neo-Darwinian evolutionary scheme is founded on a probability structure that satisfies the Kolmogorovian axioms, and as a consequence cannot incorporate quantum-like evolutionary change. In earlier research we revealed quantum structures in processes taking place in conceptual space. We argue that the presence of quantum structures in language and the earlier detected quantum structures in conceptual change make the neo-Darwinian evolutionary scheme strictly too limited for Evolutionary Epistemology. We sketch how we believe that evolution in a more general way should be implemented in epistemology and conceptual change, but also in biology, and how this view would lead to another relation between both biology and epistemology.Comment: 20 pages, no figures, this version of the paper is equal to the foregoing. The paper has meanwhile been published in another book series than the one tentatively mentioned in the comments given with the foregoing versio

    THE CHILD AND THE WORLD: How Children acquire Language

    Get PDF
    HOW CHILDREN ACQUIRE LANGUAGE Over the last few decades research into child language acquisition has been revolutionized by the use of ingenious new techniques which allow one to investigate what in fact infants (that is children not yet able to speak) can perceive when exposed to a stream of speech sound, the discriminations they can make between different speech sounds, differentspeech sound sequences and different words. However on the central features of the mystery, the extraordinarily rapid acquisition of lexicon and complex syntactic structures, little solid progress has been made. The questions being researched are how infants acquire and produce the speech sounds (phonemes) of the community language; how infants find words in the stream of speech; and how they link words to perceived objects or action, that is, discover meanings. In a recent general review in Nature of children's language acquisition, Patricia Kuhl also asked why we do not learn new languages as easily at 50 as at 5 and why computers have not cracked the human linguistic code. The motor theory of language function and origin makes possible a plausible account of child language acquisition generally from which answers can be derived also to these further questions. Why computers so far have been unable to 'crack' the language problem becomes apparent in the light of the motor theory account: computers can have no natural relation between words and their meanings; they have no conceptual store to which the network of words is linked nor do they have the innate aspects of language functioning - represented by function words; computers have no direct links between speech sounds and movement patterns and they do not have the instantly integrated neural patterning underlying thought - they necessarily operate serially and hierarchically. Adults find the acquisition of a new language much more difficult than children do because they are already neurally committed to the link between the words of their first language and the elements in their conceptual store. A second language being acquired by an adult is in direct competition for neural space with the network structures established for the first language

    Fast computing of scattering maps of nanostructures using graphical processing units

    Full text link
    Scattering maps from strained or disordered nano-structures around a Bragg reflection can either be computed quickly using approximations and a (Fast) Fourier transform, or using individual atomic positions. In this article we show that it is possible to compute up to 4.10^10 $reflections.atoms/s using a single graphic card, and we evaluate how this speed depends on number of atoms and points in reciprocal space. An open-source software library (PyNX) allowing easy scattering computations (including grazing incidence conditions) in the Python language is described, with examples of scattering from non-ideal nanostructures.Comment: 7 pages, 4 figure

    Generalized Strong Preservation by Abstract Interpretation

    Full text link
    Standard abstract model checking relies on abstract Kripke structures which approximate concrete models by gluing together indistinguishable states, namely by a partition of the concrete state space. Strong preservation for a specification language L encodes the equivalence of concrete and abstract model checking of formulas in L. We show how abstract interpretation can be used to design abstract models that are more general than abstract Kripke structures. Accordingly, strong preservation is generalized to abstract interpretation-based models and precisely related to the concept of completeness in abstract interpretation. The problem of minimally refining an abstract model in order to make it strongly preserving for some language L can be formulated as a minimal domain refinement in abstract interpretation in order to get completeness w.r.t. the logical/temporal operators of L. It turns out that this refined strongly preserving abstract model always exists and can be characterized as a greatest fixed point. As a consequence, some well-known behavioural equivalences, like bisimulation, simulation and stuttering, and their corresponding partition refinement algorithms can be elegantly characterized in abstract interpretation as completeness properties and refinements

    Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational AutoEncoders

    Full text link
    The injection of syntactic information in Variational AutoEncoders (VAEs) has been shown to result in an overall improvement of performances and generalisation. An effective strategy to achieve such a goal is to separate the encoding of distributional semantic features and syntactic structures into heterogeneous latent spaces via multi-task learning or dual encoder architectures. However, existing works employing such techniques are limited to LSTM-based VAEs. In this paper, we investigate latent space separation methods for structural syntactic injection in Transformer-based VAE architectures (i.e., Optimus). Specifically, we explore how syntactic structures can be leveraged in the encoding stage through the integration of graph-based and sequential models, and how multiple, specialised latent representations can be injected into the decoder's attention mechanism via low-rank operators. Our empirical evaluation, carried out on natural language sentences and mathematical expressions, reveals that the proposed end-to-end VAE architecture can result in a better overall organisation of the latent space, alleviating the information loss occurring in standard VAE setups, resulting in enhanced performances on language modelling and downstream generation tasks

    (M)other Lands, (M)other Tongues: Resistance to the Linear in Two Postcolonial Moroccan Texts

    Get PDF
    This project focuses on French language novels by two Moroccan authors, Love in Two Languages by Abdelkebir Khatibi and With Downcast Eyes by Tahar Ben Jelloun. Both these novels were written in the 1980s. In Love in Two Languages, which is a novel with a deconstructed plot, the narrator deals with the struggles of having a French lover while being Moroccan, ie. from a country that was colonized by France, as well as his strained relationship with the French language. Ben Jelloun’s book, With Downcast Eyes, is about a young Moroccan girl who moves to France with her family and her struggles to learn French, while also feeling in a constant middle space between Morocco and France. How do both create a new linguistic space, one that is anti-colonial, while also writing in French? How are they reconfiguring the French language and creating a poetics of relation, moving away from a linear colonial conception of poetics? This project examines how these books create a liminal literary space, one that questions its own use of language and does not take French for granted. It is a space which reexamines its relation to the Other, with a capital O. Firstly, this thesis looks at the ways in which muddled narrative structures, character movements and the blurring of geographical settings all work to create a nonlinear literary space, in other words a space that refuses to adopt trajectories of colonialism. The second chapter of this project examines the ways in which the narrators deal with colonial trauma. The chapter focuses on both narrative and linguistic moments of friction and conflict in the texts, which at once shows the need for new literary spaces but also the constant tension in which these spaces exist

    Process, System, Causality, and Quantum Mechanics, A Psychoanalysis of Animal Faith

    Full text link
    We shall argue in this paper that a central piece of modern physics does not really belong to physics at all but to elementary probability theory. Given a joint probability distribution J on a set of random variables containing x and y, define a link between x and y to be the condition x=y on J. Define the {\it state} D of a link x=y as the joint probability distribution matrix on x and y without the link. The two core laws of quantum mechanics are the Born probability rule, and the unitary dynamical law whose best known form is the Schrodinger's equation. Von Neumann formulated these two laws in the language of Hilbert space as prob(P) = trace(PD) and D'T = TD respectively, where P is a projection, D and D' are (von Neumann) density matrices, and T is a unitary transformation. We'll see that if we regard link states as density matrices, the algebraic forms of these two core laws occur as completely general theorems about links. When we extend probability theory by allowing cases to count negatively, we find that the Hilbert space framework of quantum mechanics proper emerges from the assumption that all D's are symmetrical in rows and columns. On the other hand, Markovian systems emerge when we assume that one of every linked variable pair has a uniform probability distribution. By representing quantum and Markovian structure in this way, we see clearly both how they differ, and also how they can coexist in natural harmony with each other, as they must in quantum measurement, which we'll examine in some detail. Looking beyond quantum mechanics, we see how both structures have their special places in a much larger continuum of formal systems that we have yet to look for in nature.Comment: LaTex, 86 page
    • …
    corecore