608 research outputs found

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Turing machines can be efficiently simulated by the General Purpose Analog Computer

    Full text link
    The Church-Turing thesis states that any sufficiently powerful computational model which captures the notion of algorithm is computationally equivalent to the Turing machine. This equivalence usually holds both at a computability level and at a computational complexity level modulo polynomial reductions. However, the situation is less clear in what concerns models of computation using real numbers, and no analog of the Church-Turing thesis exists for this case. Recently it was shown that some models of computation with real numbers were equivalent from a computability perspective. In particular it was shown that Shannon's General Purpose Analog Computer (GPAC) is equivalent to Computable Analysis. However, little is known about what happens at a computational complexity level. In this paper we shed some light on the connections between this two models, from a computational complexity level, by showing that, modulo polynomial reductions, computations of Turing machines can be simulated by GPACs, without the need of using more (space) resources than those used in the original Turing computation, as long as we are talking about bounded computations. In other words, computations done by the GPAC are as space-efficient as computations done in the context of Computable Analysis

    Most Programs Stop Quickly or Never Halt

    Get PDF
    Since many real-world problems arising in the fields of compiler optimisation, automated software engineering, formal proof systems, and so forth are equivalent to the Halting Problem--the most notorious undecidable problem--there is a growing interest, not only academically, in understanding the problem better and in providing alternative solutions. Halting computations can be recognised by simply running them; the main difficulty is to detect non-halting programs. Our approach is to have the probability space extend over both space and time and to consider the probability that a random NN-bit program has halted by a random time. We postulate an a priori computable probability distribution on all possible runtimes and we prove that given an integer k>0, we can effectively compute a time bound T such that the probability that an N-bit program will eventually halt given that it has not halted by T is smaller than 2^{-k}. We also show that the set of halting programs (which is computably enumerable, but not computable) can be written as a disjoint union of a computable set and a set of effectively vanishing probability. Finally, we show that ``long'' runtimes are effectively rare. More formally, the set of times at which an N-bit program can stop after the time 2^{N+constant} has effectively zero density.Comment: Shortened abstract and changed format of references to match Adv. Appl. Math guideline

    P Systems: from Anti-Matter to Anti-Rules

    Get PDF
    The concept of a matter object being annihilated when meeting its corresponding anti-matter object is taken over for rule labels as objects and anti-rule labels as the corresponding annihilation counterpart in P systems. In the presence of a corresponding anti-rule object, annihilation of a rule object happens before the rule that the rule object represents, can be applied. Applying a rule consumes the corresponding rule object, but may also produce new rule objects as well as anti-rule objects, too. Computational completeness in this setting then can be obtained in a one-membrane P system with non-cooperative rules and rule / anti-rule annihilation rules when using one of the standard maximally parallel derivation modes as well as any of the maximally parallel set derivation modes (i.e., non-extendable (multi)sets of rules, (multi)sets with maximal number of rules, (multi)sets of rules a ecting the maximal number of objects). When using the sequential derivation mode, at least the computational power of partially blind register machines is obtained

    The Busy Beaver Competition: a historical survey

    Full text link
    Tibor Rado defined the Busy Beaver Competition in 1962. He used Turing machines to give explicit definitions for some functions that are not computable and grow faster than any computable function. He put forward the problem of computing the values of these functions on numbers 1, 2, 3, ... More and more powerful computers have made possible the computation of lower bounds for these values. In 1988, Brady extended the definitions to functions on two variables. We give a historical survey of these works. The successive record holders in the Busy Beaver Competition are displayed, with their discoverers, the date they were found, and, for some of them, an analysis of their behavior.Comment: 70 page
    corecore