6,231 research outputs found

    A qualitative enquiry into OpenStreetMap making

    Get PDF
    Based on a case study on the OpenStreetMap community, this paper provides a contextual and embodied understanding of the user-led, user-participatory and user-generated produsage phenomenon. It employs Grounded Theory, Social Worlds Theory, and qualitative methods to illuminate and explores the produsage processes of OpenStreetMap making, and how knowledge artefacts such as maps can be collectively and collaboratively produced by a community of people, who are situated in different places around the world but engaged with the same repertoire of mapping practices. The empirical data illustrate that OpenStreetMap itself acts as a boundary object that enables actors from different social worlds to co-produce the Map through interacting with each other and negotiating the meanings of mapping, the mapping data and the Map itself. The discourses also show that unlike traditional maps that black-box cartographic knowledge and offer a single dominant perspective of cities or places, OpenStreetMap is an embodied epistemic object that embraces different world views. The paper also explores how contributors build their identities as an OpenStreetMaper alongside some other identities they have. Understanding the identity-building process helps to understand mapping as an embodied activity with emotional, cognitive and social repertoires

    Contextual Media Retrieval Using Natural Language Queries

    Full text link
    The widespread integration of cameras in hand-held and head-worn devices as well as the ability to share content online enables a large and diverse visual capture of the world that millions of users build up collectively every day. We envision these images as well as associated meta information, such as GPS coordinates and timestamps, to form a collective visual memory that can be queried while automatically taking the ever-changing context of mobile users into account. As a first step towards this vision, in this work we present Xplore-M-Ego: a novel media retrieval system that allows users to query a dynamic database of images and videos using spatio-temporal natural language queries. We evaluate our system using a new dataset of real user queries as well as through a usability study. One key finding is that there is a considerable amount of inter-user variability, for example in the resolution of spatial relations in natural language utterances. We show that our retrieval system can cope with this variability using personalisation through an online learning-based retrieval formulation.Comment: 8 pages, 9 figures, 1 tabl

    Investigating the use of semantic technologies in spatial mapping applications

    Get PDF
    Semantic Web Technologies are ideally suited to build context-aware information retrieval applications. However, the geospatial aspect of context awareness presents unique challenges such as the semantic modelling of geographical references for efficient handling of spatial queries, the reconciliation of the heterogeneity at the semantic and geo-representation levels, maintaining the quality of service and scalability of communicating, and the efficient rendering of the spatial queries' results. In this paper, we describe the modelling decisions taken to solve these challenges by analysing our implementation of an intelligent planning and recommendation tool that provides location-aware advice for a specific application domain. This paper contributes to the methodology of integrating heterogeneous geo-referenced data into semantic knowledgebases, and also proposes mechanisms for efficient spatial interrogation of the semantic knowledgebase and optimising the rendering of the dynamically retrieved context-relevant information on a web frontend

    Crisis Analytics: Big Data Driven Crisis Response

    Get PDF
    Disasters have long been a scourge for humanity. With the advances in technology (in terms of computing, communications, and the ability to process and analyze big data), our ability to respond to disasters is at an inflection point. There is great optimism that big data tools can be leveraged to process the large amounts of crisis-related data (in the form of user generated data in addition to the traditional humanitarian data) to provide an insight into the fast-changing situation and help drive an effective disaster response. This article introduces the history and the future of big crisis data analytics, along with a discussion on its promise, challenges, and pitfalls

    Are crowdsourced datasets suitable for specialized routing services? Case study of Openstreetmap for routing of people with limited mobility

    Get PDF
    Nowadays, Volunteered Geographic Information (VGI) has increasingly gained attractiveness to both amateur users and professionals. Using data generated from the crowd has become a hot topic for several application domains including transportation. However, there are concerns regarding the quality of such datasets. As one of the most famous crowdsourced mapping platforms, we analyze the fitness for use of OpenStreetMap (OSM) database for routing and navigation of people with limited mobility. We assess the completeness of OSM data regarding sidewalk information. Relevant attributes for sidewalk information such as sidewalk width, incline, surface texture, etc. are considered, and through both extrinsic and intrinsic quality analysis methods, we present the results of fitness for use of OSM data for routing services of disabled persons. Based on empirical results, it is concluded that OSM data of relatively large spatial extents inside all studied cities could be an acceptable region of interest to test and evaluate wheelchair routing and navigation services, as long as other data quality parameters such as positional accuracy and logical consistency are checked and proved to be acceptable. We present an extended version of OSMatrix web service and explore how it is employed to perform spatial and temporal analysis of sidewalk data completeness in OSM. The tool is beneficial for piloting activities, whereas the pilot site planners can query OpenStreetMap and visualize the degree of sidewalk data availability in a certain region of interest. This would allow identifying the areas that data are mostly missing and plan for data collection events. Furthermore, empirical results of data completeness for several OSM data indicators and their potential relation to sidewalk data completeness are presented and discussed. Finally, the article ends with an outlook for future research study in this area

    Analyzing the Tagging Quality of the Spanish OpenStreetMap

    Get PDF
    In this paper, a framework for the assessment of the quality of OpenStreetMap is presented, comprising a batch of methods to analyze the quality of entity tagging. The approach uses Taginfo as a reference base and analyses quality measures such as completeness, compliance, consistence, granularity, richness and trust . The framework has been used to analyze the quality of OpenStreetMap in Spain, comparing the main cities of Spain. Also a comparison between Spain and some major European cities has been carried out. Additionally, a Web tool has been also developed in order to facilitate the same kind of analysis in any area of the world

    Urban Street Network Analysis in a Computational Notebook

    Get PDF
    Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively conduct analytics and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download urban data and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks help introduce methods to new users and help researchers reach broader audiences interested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban planning, analytics, and related geocomputation disciplines should continue into the future
    • …
    corecore