3,796 research outputs found

    Three-dimensional memory vectorization for high bandwidth media memory systems

    Get PDF
    Vector processors have good performance, cost and adaptability when targeting multimedia applications. However, for a significant number of media programs, conventional memory configurations fail to deliver enough memory references per cycle to feed the SIMD functional units. This paper addresses the problem of the memory bandwidth. We propose a novel mechanism suitable for 2-dimensional vector architectures and targeted at providing high effective bandwidth for SIMD memory instructions. The basis of this mechanism is the extension of the scope of vectorization at the memory level, so that 3-dimensional memory patterns can be fetched into a second-level register file. By fetching long blocks of data and by reusing 2-dimensional memory streams at this second-level register file, we obtain a significant increase in the effective memory bandwidth. As side benefits, the new 3-dimensional load instructions provide a high robustness to memory latency and a significant reduction of the cache activity, thus reducing power and energy requirements. At the investment of a 50% more area than a regular SIMD register file, we have measured and average speed-up of 13% and the potential for power savings in the L2 cache of a 30%.Peer ReviewedPostprint (published version

    Empowering a helper cluster through data-width aware instruction selection policies

    Get PDF
    Narrow values that can be represented by less number of bits than the full machine width occur very frequently in programs. On the other hand, clustering mechanisms enable cost- and performance-effective scaling of processor back-end features. Those attributes can be combined synergistically to design special clusters operating on narrow values (a.k.a. helper cluster), potentially providing performance benefits. We complement a 32-bit monolithic processor with a low-complexity 8-bit helper cluster. Then, in our main focus, we propose various ideas to select suitable instructions to execute in the data-width based clusters. We add data-width information as another instruction steering decision metric and introduce new data-width based selection algorithms which also consider dependency, inter-cluster communication and load imbalance. Utilizing those techniques, the performance of a wide range of workloads are substantially increased; helper cluster achieves an average speedup of 11% for a wide range of 412 apps. When focusing on integer applications, the speedup can be as high as 22% on averagePeer ReviewedPostprint (published version

    Exploiting a new level of DLP in multimedia applications

    Get PDF
    This paper proposes and evaluates MOM: a novel ISA paradigm targeted at multimedia applications. By fusing conventional vector ISA approaches together with more recent SIMD-like (Single Instruction Multiple Data) ISAs (such as MMX), we have developed a new matrix oriented ISA which efficiently deals with the small matrix structures typically found in multimedia applications. MOM exploits a level of DLP not reachable by neither conventional vector ISAs nor SIMD-like media ISA extensions. Our results show that MOM provides a factor of 1.3x to 4x performance improvement when compared with two different multimedia extensions (MMX and MDMX) on several kernels, which translates into up to a 50% of performance gain when measuring full applications (20% in average). Furthermore, the streaming nature of MOM provides additional advantages for executing multimedia applications, such as a very low fetch pressure or a high tolerance to memory latency, making MOM an ideal candidate for the embedded domain.Peer ReviewedPostprint (published version

    Synthesis of application specific processor architectures for ultra-low energy consumption

    No full text
    In this paper we suggest that further energy savings can be achieved by a new approach to synthesis of embedded processor cores, where the architecture is tailored to the algorithms that the core executes. In the context of embedded processor synthesis, both single-core and many-core, the types of algorithms and demands on the execution efficiency are usually known at the chip design time. This knowledge can be utilised at the design stage to synthesise architectures optimised for energy consumption. Firstly, we present an overview of both traditional energy saving techniques and new developments in architectural approaches to energy-efficient processing. Secondly, we propose a picoMIPS architecture that serves as an architectural template for energy-efficient synthesis. As a case study, we show how the picoMIPS architecture can be tailored to an energy efficient execution of the DCT algorithm

    DLP+TLP processors for the next generation of media workloads

    Get PDF
    Future media workloads will require about two levels of magnitude the performance achieved by current general purpose processors. High uni-threaded performance will be needed to accomplish real-time constraints together with huge computational throughput, as next generation of media workloads will be eminently multithreaded (MPEG-4/MPEG-7). In order to fulfil the challenge of providing both good uni-threaded performance and throughput, we propose to join the simultaneous multithreading execution paradigm (SMT) together with the ability to execute media-oriented streaming /spl mu/-SIMD instructions. This paper evaluates the performance of two different aggressive SMT processors: one with conventional /spl mu/-SIMD extensions (such as MMX) and one with longer streaming vector /spl mu/-SIMD extensions. We will show that future media workloads are, in fact, dominated by the scalar performance. The combination of SMT plus streaming vector /spl mu/-SIMD helps alleviate the performance bottleneck of the integer unit. SMT allowsPeer ReviewedPostprint (published version

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
    corecore