38 research outputs found

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    A multi-hierarchical symbolic model of the environment for improving mobile robot operation

    Get PDF
    El trabajo desarrollado en esta tesis se centra en el estudio y aplicación de estructuras multijerárquicas, que representan el entorno de un robot móvil, con el objetivo de mejorar su capacidad de realizar tareas complejas en escenarios humanos. Un robot móvil debe poseer una representación simbólica de su entorno para poder llevar a cabo operaciones deliberativas, por ejemplo planificar tareas. Sin embargo a la hora de representar simbólicamente entornos reales, dado su complejidad, es imprescindible contar con mecanismos capaces de organizar y facilitar el acceso a la ingente cantidad de información que de ellos se deriva. Aparte del inconveniente de tratar con grandes cantidades de información, existen otros problemas subyacentes de la representación simbólica de entornos reales, los cuales aún no han sido resueltos por completo en la literatura científica. Uno de ellos consiste en el mantenimiento de la representación simbólica optimizada con respecto a las tareas que el robot debe realizar, y coherente con el entorno en el que se desenvuelve. Otro problema, relacionado con el anterior es la creación/modificación de la información simbólica a partir de información meramente sensorial (este problema es conocido como symbol-grounding). Esta tesis estudia estos problemas y aporta soluciones mediante estructuras multijerárquicas. Estas estructuras simbólicas, basadas en el concepto de abstracción, imitan la forma en la que los humanos organizamos la información espacial y permite a un robot móvil mejorar sus habilidades en entornos complejos. Las principales contribuciones de este trabajo son: - Se ha formalizado matemáticamente un modelo simbólico basado en múltiples abstracciones (multijerarquías) mediante Teoría de Categorías. Se ha desarrollado un planificador de tareas eficiente que es capaz de aprovechar la organización jerárquica del modelo simbólico del entorno. Nuestro método ha sido validado matemáticamente y se han implementado y comparado dos variantes del mismo (HPWA-1 y HPWA-2). - Una instancia particular del modelo multijerárquico ha sido estudiada e implementada para organizar información simbólica con el objetivo de mejorar simultáneamente diferentes tareas a realizar por un robot móvil. - Se ha desarrollado un procedimiento que (1) construye un modelo jerárquico del entorno de un robot, (2) lo mantiene coherente y actualizado y (3) lo optimiza con el fin de mejorar las tareas realizadas por un robot móvil. - Finalmente, se ha implementado una arquitectura robótica que engloba todas las cuestiones anteriormente citadas. Se han realizado pruebas reales con una silla de ruedas robotizada que ponen de manifiesto la utilidad del uso de estructuras multijerárquicas en robótica móvil

    Microgeographic and ontogenetic variability in the ecology of invasive Brown Treesnakes on Guam, and effects of roads on their landscape-scale movements

    Get PDF
    2015 Spring.Includes bibliographical references.To view the abstract, please see the full text of the document

    Coordination on Systems of Multiple UAVs

    Get PDF
    Esta tesis trata acerca de métodos para coordinar las trayectorias de un sistema de Vehículos Aéreos no Tripulados y Autónomos (en adelante UAVs). El primer conjunto de técnicas desarrolladas durante la tesis se agrupan dentro de las técnicas de planificación de trayectorias. En este caso, el objetivo es generar planes de vuelo para un conjunto de vehículos coordinadamente de forma que no se produzcan colisiones entre ellos. Además, este tipo de técnicas puede usarse para modificar el plan de vuelo de un subconjunto de UAVs en tiempo real. Entre los algoritmos desarrollados en la tesis podemos destacar la adaptación de algoritmos evolutivos como los Algoritmos Genéticos y el Particle Swarm (Enjambre de Partículas), la incorporación de nuevas formas de muestreo del espacio para la aplicación del algoritmo Optimal Rapidly Exploring Random Trees (RRT*) en sistemas multi-UAV usando técnicas de muestreo novedosas. También se ha estudiado el comportamiento de parte de estos algoritmos en situaciones variables de incertidumbre del estado del sistema. En particular, se propone el uso del Filtro de Partículas para estimar la posición relativa entre varios UAVs. Además, se estudia la aplicación de métodos reactivos para la resolución de colisiones en tiempo real. Esta tesis propone un nuevo algoritmo para la resolución de colisiones entre múltiples UAVs en presencia de obstáculos fijos llamado G-ORCA. Este algoritmo soluciona varios problemas que han surgido al aplicar el algoritmo ORCA en su variante 3D en sistemas compuestos por vehículos reales. Su seguridad se ha demostrado tanto analíticamente, como empíricamente en pruebas con sistemas reales. De hecho, durante esta tesis numerosos experimentos en sistemas multi-UAV reales compuestos hasta por 4 UAVs han sido ejecutados. En dichos experimentos, se realiza una coordinación autónoma de UAVs en las que se asegura la ejecución de trayectorias libres de colisiones garantizando por tanto la seguridad del sistema. Una característica reseñable de esta tesis es que los algoritmos desarrollados han sido probados e integrados en sistemas más complejos que son usados en aplicaciones reales. En primer lugar, se presenta un sistema para aumentar la duración del vuelo de planeadores aprovechando las corrientes ascendentes de viento generadas por el calor (térmicas). En segundo lugar, un sistema de detección y resolución de colisiones coordinado para sistemas con múltiples UAVs reactivo ha sido diseñado, desarrollado y probado experimentalmente. Este sistema ha sido integrado dentro de un sistema automático de construcción de estructuras mediante múltiples UAVs.The aim of this thesis is to propose methods to coordinately generate trajectories for a system of Autonomous Unmanned Aerial Vehicles (UAVs). The first set of proposed techniques developed in this thesis can be defined as trajectory planning techniques. In this case, the objective is to generate coordinated flight plans for a system of UAVs in such a way that no collision are produced among each pair of UAVs. Besides, these techniques can be applied online in order to modify the original flight plan whenever a potential collision is detected. Amongst the developed algorithms in this thesis we can highlight the adaptation of evolutionary algorithms such as Genetic Algorithms and Particle Swarm, and the application of Optimal Rapidly Exploring Random Trees (RRT*) algorithm into a system of several UAVs with novel sampling techniques. In addition, many of these techniques have been adapted in order to be applicable when only uncertain knowledge of the state of the system is available. In particular, the use of the Particle Filter is proposed in order to estimate the relative position between UAVs. The estimation of the position as well as the uncertainty related to this estimation are then taken into account in the conflict resolution system. All techniques proposed in this thesis have been validated by performing several simulated and real tests. For this purpose, a method for randomly generating a huge test batch is presented in chapter 3. This will allow to test the behavior of the proposed methods in a great variety of situations. During the thesis, several real experimentations with fleets composed by up to four UAVs are presented. In these experiments, the UAVs in the system are automatically coordinated in order to ensure collision-free trajectories and thus guarantee the safety of the system. The other main topic of this thesis is the application of reactive methods for real-time conflict resolution. This thesis proposes a novel algorithm for collision resolution amongst multiple UAVs in the presence of static obstacles, which has been called Generalized-Optimal Reciprocal Collision Avoidance (G-ORCA). This algorithm overcomes several issues that have been detected into the algorithm 3D-ORCA in real applications. A remarkable characteristic of this thesis is that the developed algorithms have been applied as a part of more complex systems. First, a coordinated system for flight endurance extension of gliding aircrafts by profiting the ascending wind is presented. Second, a reactive collision avoidance block has been designed, developed and tested experimentally based in the aforementioned G-ORCA algorithm. This block has been integrated into a system for assembly construction with multiple UAVs

    Trajectory planning based on collocation methods for multiple aerial and ground autonomous vehicles

    Get PDF
    Esta tesis doctorar presenta una serie de contribuciones en los métodos de coordinación y generación de trayectorias de grupos de vehículos, concretamente de vehículos autónomos. Los métodos de colocación, más conocidos por su nombre en inglés “Collocation methods”, han despertado un creciente interés en los últimos años, entre los distintos métodos numéricos para resolver cualquier tipo de problema dentro del campo de la ingeniería. Esta tesis en concreto, presenta un nuevo punto de vista dentro de los métodos de generación de trayectorias, gracias al uso de los métodos de colocación. El interés sobre los vehículos autónomos se ha visto intensificado en los últimos años. Gracias a la evolución de los sensores, la obtención de información del medio que rodea a un vehículo es cada vez más sencilla y fiable. Esto permite a los sistemas de navegación de los vehículos generar cada vez mejores trayectorias libres de colisiones. Esta habilidad también permite a los vehículos autónomos planificar rutas óptimas, evitar obstáculos, seguir algún objetivo, o muchas otras tareas. Inicialmente, el interés sobre los vehículos autónomos recaía principalmente en las aplicaciones militares, especialmente en los vehículos aéreos, conocidos como UAVs o “Drones”. Pero con el paso del tiempo, las aplicaciones civiles o domésticas están sobre pasando los intereses militares. Estas aplicaciones incluyen tanto a vehículos terrestres como aéreos, aunque el impacto sobre los vehículos autónomos aéreos (UAVs) es mucho mayor. Esto es debido a que la accesibilidad y maniobrabilidad de estos vehículos ofrece más ventajas que los vehículos autónomos terrestres (UGVs) en aplicaciones como localización, seguimiento, adquisición de imágenes, generación de mapas, etc. Esta tesis doctoral presenta un nuevo método centralizado para la generación de trayectorias para múltiples vehículos autónomos. Este método se puede usar tanto para vehículos terrestres como aéreos, e incluso en escenarios mixtos con ambos tipos de vehículos. Dicho método está basado en los métodos de colocación Pseudoespectrales, más conocido en inglés como “Pseudospectral (PS) collocation methods”. Estos métodos son muy utilizados para resolver problemas de control óptimos, y se caracterizar porque resuelven dicho problema numéricamente. En el caso de generación de trayectorias, el problema es formulado como un problema de control óptimo, incluyendo las ecuaciones diferenciales que definen la dinámica de los vehículos, las propias restricciones físicas de los actuadores del vehículo, así como las dimensiones del escenario y restricciones de distancia de seguridad entre los distintos vehículos. Luego, se define una función de costes que debe de ser optimizada, como por ejemplo, la distancia de navegación o el propio consumo del vehículo. Los métodos de colocación Pseudospectrales tratan de resolver el problema de optimización aproximando el vector de estado y de control por una serie de polinomios en una serie de puntos denominados puntos de colocación o “collocation points” en inglés. Las restricciones dinámicas de movimiento y las restricciones del problema también deben de cumplirse en dichos puntos. De esta manera, cuando el problema está discretizado y parametrizado, se produce una transformación al paradigma algebraico. Todo el problema se transforma en un problema de Programación no lineal (PNL), el cual será resuelto por algún programa de optimización como por ejemplo puede ser el “SNOPT solver”. Esta forma concreta de modelado del problema de generación de trayectorias permite obtener trayectorias mucho más realistas que son a su vez, más fácil de seguir por el vehículo en cuestión. Esta tesis presenta también un profundo estudio del comportamiento de los distintos métodos de colocación cuando son usados como generadores de trayectorias. A lo largo de la tesis se ha visto que aspectos como la discretización o la aproximación polinómica afectan a la solución del problema, y se ha analizado cómo afecta a otros aspectos como la integridad del sistema, escalabilidad del método (como influye el incremento de vehículos considerados en la planificación), tiempo de computo necesario para obtener una solución, etc. Un resumen de los objetivos que se han abarcado durante el desarrollo de la tesis se presenta a continuación: • Clasificación exhaustiva de los distintos métodos de colocación. Este punto intenta hacer una distinción entre clásicos métodos de colocación Directos y los nuevos Pseudoespectrales. Presentando una descripción completa de estos últimos. • Análisis de los métodos de colocación en problemas de generación de trayectorias. Los métodos de colocación son métodos de propósito general, de manera que se pretende analizar las ventajas y desventajas de estos métodos en los problemas de generación de trayectorias. • Estudio de rendimiento de los métodos de colocación. Aspectos como la calidad de las soluciones obtenidas, escalabilidad, tiempo de cómputo para obtener una solución, aplicaciones de tiempo real, etc. son estudiados en los distintos métodos. • Búsqueda de configuraciones que mejoren el rendimiento. En este apartado se pretende sintonizar los parámetros de configuración de algunos métodos de colocación para buscar un óptimo rendimiento. • Desarrollo de un nuevo algoritmo denominado método de colocación S-Adaptive. Este es un algoritmo desarrollado específicamente para la generación de trayectorias. Este método resuelve toda las desventajas que se producen en los métodos de colocación clásicos. • Desarrollo de escenarios con vehículos terrestres en presencia de obstáculos. Los métodos de colocación han sido muy utilizados en aplicaciones aeronáuticas. Un claro ejemple de ello es la gran cantidad de artículos que se pueden encontrar en la literatura. Es por esto que el uso de vehículos terrestres y concretamente, su uso en presencia de múltiple obstáculos fijos en dichos escenarios, supone una novedad en sí. • Validación experimental de los algoritmos. Este punto se centra en la validación de los resultados obtenidos en las fases de desarrollo y simulación, con vehículos reales. Una gran cantidad de escenarios son presentados con vehículos autónomos, tanto terrestres como aéreos. Todos estos experimentos están dentro del marco de desarrollo del proyecto europeo de investigación EC-SAFEMOBIL “Estimation and Control for SAFE wireless high MOBILity cooperative industrial systems”
    corecore