756 research outputs found

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Optimization Techniques For Next-Generation Sequencing Data Analysis

    Get PDF
    High-throughput RNA sequencing (RNA-Seq) is a popular cost-efficient technology with many medical and biological applications. This technology, however, presents a number of computational challenges in reconstructing full-length transcripts and accurately estimate their abundances across all cell types. Our contributions include (1) transcript and gene expression level estimation methods, (2) methods for genome-guided and annotation-guided transcriptome reconstruction, and (3) de novo assembly and annotation of real data sets. Transcript expression level estimation, also referred to as transcriptome quantification, tackle the problem of estimating the expression level of each transcript. Transcriptome quantification analysis is crucial to determine similar transcripts or unraveling gene functions and transcription regulation mechanisms. We propose a novel simulated regression based method for transcriptome frequency estimation from RNA-Seq reads. Transcriptome reconstruction refers to the problem of reconstructing the transcript sequences from the RNA-Seq data. We present genome-guided and annotation-guided transcriptome reconstruction methods. Empirical results on both synthetic and real RNA-seq datasets show that the proposed methods improve transcriptome quantification and reconstruction accuracy compared to currently state of the art methods. We further present the assembly and annotation of Bugula neritina transcriptome (a marine colonial animal), and Tallapoosa darter genome (a species-rich radiation freshwater fish)

    Consensus Ensemble Approaches Improve De Novo Transcriptome Assemblies

    Get PDF
    Accurate and comprehensive transcriptome assemblies lay the foundation for a range of analyses, such as differential gene expression analysis, metabolic pathway reconstruction, novel gene discovery, or metabolic flux analysis. With the arrival of next-generation sequencing technologies it has become possible to acquire the whole transcriptome data rapidly even from non-model organisms. However, the problem of accurately assembling the transcriptome for any given sample remains extremely challenging, especially in species with a high prevalence of recent gene or genome duplications, those with alternative splicing of transcripts, or those whose genomes are not well studied. This thesis provides a detailed overview of the strategies used for transcriptome assembly, including a review of the different statistics available for measuring the quality of transcriptome assemblies with the emphasis on the types of errors each statistic does and does not detect and simulation protocols to computationally generate RNAseq data that present biologically realistic problems such as gene expression bias and alternative splicing. Using such simulated RNAseq data, a comparison of the accuracy, strengths, and weaknesses of seven representative assemblers including de novo, genome-guided methods shows that all of the assemblers individually struggle to accurately reconstruct the expressed transcriptome, especially for alternative splice forms. Using a consensus of several de novo assemblers can overcome many of the weaknesses of individual assemblers, generating an ensemble assembly with higher accuracy than any individual assembler. Advisor: Jitender S. Deogu

    Piecing the puzzle together: a revisit to transcript reconstruction problem in RNA-seq

    Get PDF
    The advancement of RNA sequencing (RNA-seq) has provided an unprecedented opportunity to assess both the diversity and quantity of transcript isoforms in an mRNA transcriptome. In this paper, we revisit the computational problem of transcript reconstruction and quantification. Unlike existing methods which focus on how to explain the exons and splice variants detected by the reads with a set of isoforms, we aim at reconstructing transcripts by piecing the reads into individual effective transcript copies. Simultaneously, the quantity of each isoform is explicitly measured by the number of assembled effective copies, instead of estimated solely based on the collective read count. We have developed a novel method named Astroid that solves the problem of effective copy reconstruction on the basis of a flow network. The RNA-seq reads are represented as vertices in the flow network and are connected by weighted edges that evaluate the likelihood of two reads originating from the same effective copy. A maximum likelihood set of transcript copies is then reconstructed by solving a minimum-cost flow problem on the flow network. Simulation studies on the human transcriptome have demonstrated the superior sensitivity and specificity of Astroid in transcript reconstruction as well as improved accuracy in transcript quantification over several existing approaches. The application of Astroid on two real RNA-seq datasets has further demonstrated its accuracy through high correlation between the estimated isoform abundance and the qRT-PCR validations

    CYCLeR—a novel tool for the full isoform assembly and quantification of circRNAs

    Get PDF
    Splicing is one key mechanism determining the state of any eukaryotic cell. Apart from linear splice variants, circular splice variants (circRNAs) can arise via non-canonical splicing involving a back-splice junction (BSJ). Most existing methods only identify circRNAs via the corresponding BSJ, but do not aim to estimate their full sequence identity or to identify different, alternatively spliced circular isoforms arising from the same BSJ. We here present CYCLeR, the first computational method for identifying the full sequence identity of new and alternatively spliced circRNAs and their abundances while simultaneously co-estimating the abundances of known linear splicing isoforms. We show that CYCLeR significantly outperforms existing methods in terms of F score and quantification of transcripts in simulated data. In a in a comparative study with long-read data, we also show the advantages of CYCLeR compared to existing methods. When analysing Drosophila melanogaster data, CYCLeR uncovers biological patterns of circRNA expression that other methods fail to observe

    Genomics and phylogeny of cytoskeletal proteins: Tools and analyses.

    Get PDF

    NOVEL COMPUTATIONAL METHODS FOR TRANSCRIPT RECONSTRUCTION AND QUANTIFICATION USING RNA-SEQ DATA

    Get PDF
    The advent of RNA-seq technologies provides an unprecedented opportunity to precisely profile the mRNA transcriptome of a specific cell population. It helps reveal the characteristics of the cell under the particular condition such as a disease. It is now possible to discover mRNA transcripts not cataloged in existing database, in addition to assessing the identities and quantities of the known transcripts in a given sample or cell. However, the sequence reads obtained from an RNA-seq experiment is only a short fragment of the original transcript. How to recapitulate the mRNA transcriptome from short RNA-seq reads remains a challenging problem. We have proposed two methods directly addressing this challenge. First, we developed a novel method MultiSplice to accurately estimate the abundance of the well-annotated transcripts. Driven by the desire of detecting novel isoforms, a max-flow-min-cost algorithm named Astroid is designed for simultaneously discovering the presence and quantities of all possible transcripts in the transcriptome. We further extend an \emph{ab initio} pipeline of transcriptome analysis to large-scale dataset which may contain hundreds of samples. The effectiveness of proposed methods has been supported by a series of simulation studies, and their application on real datasets suggesting a promising opportunity in reconstructing mRNA transcriptome which is critical for revealing variations among cells (e.g. disease vs. normal)

    Computational Methods for Sequencing and Analysis of Heterogeneous RNA Populations

    Get PDF
    Next-generation sequencing (NGS) and mass spectrometry technologies bring unprecedented throughput, scalability and speed, facilitating the studies of biological systems. These technologies allow to sequence and analyze heterogeneous RNA populations rather than single sequences. In particular, they provide the opportunity to implement massive viral surveillance and transcriptome quantification. However, in order to fully exploit the capabilities of NGS technology we need to develop computational methods able to analyze billions of reads for assembly and characterization of sampled RNA populations. In this work we present novel computational methods for cost- and time-effective analysis of sequencing data from viral and RNA samples. In particular, we describe: i) computational methods for transcriptome reconstruction and quantification; ii) method for mass spectrometry data analysis; iii) combinatorial pooling method; iv) computational methods for analysis of intra-host viral populations
    • …
    corecore