332 research outputs found

    A rule of thumb for riffle shuffling

    Full text link
    We study how many riffle shuffles are required to mix n cards if only certain features of the deck are of interest, e.g. suits disregarded or only the colors of interest. For these features, the number of shuffles drops from 3/2 log_2(n) to log_2(n). We derive closed formulae and an asymptotic `rule of thumb' formula which is remarkably accurate.Comment: 27 pages, 5 table

    Biased random-to-top shuffling

    Full text link
    Recently Wilson [Ann. Appl. Probab. 14 (2004) 274--325] introduced an important new technique for lower bounding the mixing time of a Markov chain. In this paper we extend Wilson's technique to find lower bounds of the correct order for card shuffling Markov chains where at each time step a random card is picked and put at the top of the deck. Two classes of such shuffles are addressed, one where the probability that a given card is picked at a given time step depends on its identity, the so-called move-to-front scheme, and one where it depends on its position. For the move-to-front scheme, a test function that is a combination of several different eigenvectors of the transition matrix is used. A general method for finding and using such a test function, under a natural negative dependence condition, is introduced. It is shown that the correct order of the mixing time is given by the biased coupon collector's problem corresponding to the move-to-front scheme at hand. For the second class, a version of Wilson's technique for complex-valued eigenvalues/eigenvectors is used. Such variants were presented in [Random Walks and Geometry (2004) 515--532] and [Electron. Comm. Probab. 8 (2003) 77--85]. Here we present another such variant which seems to be the most natural one for this particular class of problems. To find the eigenvalues for the general case of the second class of problems is difficult, so we restrict attention to two special cases. In the first case the card that is moved to the top is picked uniformly at random from the bottom k=k(n)=o(n)k=k(n)=o(n) cards, and we find the lower bound (n3/(4π2k(k−1)))log⁥n(n^3/(4\pi^2k(k-1)))\log n. Via a coupling, an upper bound exceeding this by only a factor 4 is found. This generalizes Wilson's [Electron. Comm. Probab. 8 (2003) 77--85] result on the Rudvalis shuffle and Goel's [Ann. Appl. Probab. 16 (2006) 30--55] result on top-to-bottom shuffles. In the second case the card moved to the top is, with probability 1/2, the bottom card and with probability 1/2, the card at position n−kn-k. Here the lower bound is again of order (n3/k2)log⁥n(n^3/k^2)\log n, but in this case this does not seem to be tight unless k=O(1)k=O(1). What the correct order of mixing is in this case is an open question. We show that when k=n/2k=n/2, it is at least Θ(n2)\Theta(n^2).Comment: Published at http://dx.doi.org/10.1214/10505160600000097 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen

    Get PDF
    Akari, Takuzu, Kakuro and KenKen are logic games similar to Sudoku. In Akari, a labyrinth on a grid has to be lit by placing lanterns, respecting various constraints. In Takuzu a grid has to be filled with 0's and 1's, while respecting certain constraints. In Kakuro a grid has to be filled with numbers such that the sums per row and column match given values; similarly in KenKen a grid has to be filled with numbers such that in given areas the product, sum, difference or quotient equals a given value. We give physical algorithms to realize zero-knowledge proofs for these games which allow a player to show that he knows a solution without revealing it. These interactive proofs can be realized with simple office material as they only rely on cards and envelopes. Moreover, we formalize our algorithms and prove their security.Comment: FUN with algorithms 2016, Jun 2016, La Maddalena, Ital

    Knowing When to Fold\u27em: A Monte Carlo Exploration of Card Shuffling and How Poker Players Can Gain an Advantage

    Full text link
    This work demonstrates that the card shuffling procedure commonly performed in casino poker rooms is insufficient for randomizing a deck of cards. We explore this in the context of Texas Hold’em, which has established itself as the most popular form of poker worldwide over the past few decades. We show the degree to which the resulting distribution of the orderings of all 52 cards in the deck after shuffling is not uniform. Rather, any given card may be substantially more (or less) likely to show up as an important card in the subsequent hand. Additionally, we find that the shuffling procedure does not sufficiently separate cards from their starting point; that is, cards are more likely to stay close together after shuffling than they should by chance. Thus, in this work, we demonstrate that Texas Hold’em players can gain an advantage over their opponents by recognizing these deficiencies in the shuffling procedure
    • 

    corecore