31 research outputs found

    Sources of Irreproducibility in Machine Learning: A Review

    Full text link
    Lately, several benchmark studies have shown that the state of the art in some of the sub-fields of machine learning actually has not progressed despite progress being reported in the literature. The lack of progress is partly caused by the irreproducibility of many model comparison studies. Model comparison studies are conducted that do not control for many known sources of irreproducibility. This leads to results that cannot be verified by third parties. Our objective is to provide an overview of the sources of irreproducibility that are reported in the literature. We review the literature to provide an overview and a taxonomy in addition to a discussion on the identified sources of irreproducibility. Finally, we identify three lines of further inquiry

    Variance of ML-based software fault predictors: are we really improving fault prediction?

    Full text link
    Software quality assurance activities become increasingly difficult as software systems become more and more complex and continuously grow in size. Moreover, testing becomes even more expensive when dealing with large-scale systems. Thus, to effectively allocate quality assurance resources, researchers have proposed fault prediction (FP) which utilizes machine learning (ML) to predict fault-prone code areas. However, ML algorithms typically make use of stochastic elements to increase the prediction models' generalizability and efficiency of the training process. These stochastic elements, also known as nondeterminism-introducing (NI) factors, lead to variance in the training process and as a result, lead to variance in prediction accuracy and training time. This variance poses a challenge for reproducibility in research. More importantly, while fault prediction models may have shown good performance in the lab (e.g., often-times involving multiple runs and averaging outcomes), high variance of results can pose the risk that these models show low performance when applied in practice. In this work, we experimentally analyze the variance of a state-of-the-art fault prediction approach. Our experimental results indicate that NI factors can indeed cause considerable variance in the fault prediction models' accuracy. We observed a maximum variance of 10.10% in terms of the per-class accuracy metric. We thus, also discuss how to deal with such variance

    Hyperparameter Optimization for Multi-Objective Reinforcement Learning

    Full text link
    Reinforcement learning (RL) has emerged as a powerful approach for tackling complex problems. The recent introduction of multi-objective reinforcement learning (MORL) has further expanded the scope of RL by enabling agents to make trade-offs among multiple objectives. This advancement not only has broadened the range of problems that can be tackled but also created numerous opportunities for exploration and advancement. Yet, the effectiveness of RL agents heavily relies on appropriately setting their hyperparameters. In practice, this task often proves to be challenging, leading to unsuccessful deployments of these techniques in various instances. Hence, prior research has explored hyperparameter optimization in RL to address this concern. This paper presents an initial investigation into the challenge of hyperparameter optimization specifically for MORL. We formalize the problem, highlight its distinctive challenges, and propose a systematic methodology to address it. The proposed methodology is applied to a well-known environment using a state-of-the-art MORL algorithm, and preliminary results are reported. Our findings indicate that the proposed methodology can effectively provide hyperparameter configurations that significantly enhance the performance of MORL agents. Furthermore, this study identifies various future research opportunities to further advance the field of hyperparameter optimization for MORL.Comment: Presented at the MODeM workshop https://modem2023.vub.ac.be/

    Deep Learning in Unconventional Domains

    Get PDF
    Machine learning methods have dramatically improved in recent years thanks to advances in deep learning (LeCun et al., 2015), a set of methods for training high-dimensional, highly-parameterized, nonlinear functions. Yet deep learning progress has been concentrated in the domains of computer vision, vision-based reinforcement learning, and natural language processing. This dissertation is an attempt to extend deep learning into domains where it has thus far had little impact or has never been applied. It presents new deep learning algorithms and state-of-the-art results on tasks in the domains of source-code analysis, relational databases, and tabular data.</p

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv

    Learning from alternative sources of supervision

    Get PDF
    With the rise of the internet, data of many varieties including: images, audio, text and video are abundant. Unfortunately for a very specific task one might have, the data for that problem is not typically abundant unless you are lucky. Typically one might have only a small amount of labelled data, or only noisy labels, or labels for a different task, or perhaps a simulator and reward function but no demonstrations, or even a simulator but no reward function at all. However, arguably no task is truly novel and so it is often possible for neural networks to benefit from the abundant data that is related to your current task. This thesis documents three methods for learning from alternative sources of supervision, an alternative to the more preferable case of simply having unlimited amounts of direct examples of your task. Firstly we show how having data from many related tasks could be described with a simple graphical model and fit using a Variational-Autoencoder - directly modelling and representing the relations amongst tasks. Secondly we investigate various forms of prediction-based intrinsic rewards for agents in a simulator with no extrinsic rewards. Thirdly we introduce a novel intrinsic reward and investigate how to best combine it with an extrinsic reward for best performance

    Revisiting Neural Program Smoothing for Fuzzing

    Full text link
    Testing with randomly generated inputs (fuzzing) has gained significant traction due to its capacity to expose program vulnerabilities automatically. Fuzz testing campaigns generate large amounts of data, making them ideal for the application of machine learning (ML). Neural program smoothing (NPS), a specific family of ML-guided fuzzers, aims to use a neural network as a smooth approximation of the program target for new test case generation. In this paper, we conduct the most extensive evaluation of NPS fuzzers against standard gray-box fuzzers (>11 CPU years and >5.5 GPU years), and make the following contributions: (1) We find that the original performance claims for NPS fuzzers do not hold; a gap we relate to fundamental, implementation, and experimental limitations of prior works. (2) We contribute the first in-depth analysis of the contribution of machine learning and gradient-based mutations in NPS. (3) We implement Neuzz++, which shows that addressing the practical limitations of NPS fuzzers improves performance, but that standard gray-box fuzzers almost always surpass NPS-based fuzzers. (4) As a consequence, we propose new guidelines targeted at benchmarking fuzzing based on machine learning, and present MLFuzz, a platform with GPU access for easy and reproducible evaluation of ML-based fuzzers. Neuzz++, MLFuzz, and all our data are public.Comment: Accepted as conference paper at ESEC/FSE 202

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore