117 research outputs found

    Voting Rules for Expressing Conditional Preferences in Multiwinner Elections

    Get PDF
    Ο τομέας της Υπολογιστικής Θεωρίας Κοινωνικής Επιλογής μελετά, από αλγοριθμική σκοπιά, την αποτίμηση των προσωπικών προτιμήσεων προς μια συλλογική απόφαση. Πληθώρα προβλημάτων σε πολυπρακτορικά συστήματα, τεχνολογίες λήψης αποφάσεων, σχεδιασμό δικτύων, πολιτικό σχεδιασμό, συστήματα συστάσεων και άλλα, απαιτούν το σχεδιασμό και τη θεωρητική αξιολόγηση κανόνων ψηφοφορίας. Στο πρώτο κεφάλαιο παρουσιάζουμε την προέλευση, ορισμένες εφαρμογές και υποπεριοχές μαζί με μία ιστορική επισκόπηση του αντικειμένου. Στο δεύτερο κεφάλαιο, εισάγουμε τον αναγνώστη σε εκλογικά σενάρια με περισσότερους από έναν νικητές, περιγράφοντας κάποιες επιθυμητές ιδιότητες των σχετικών κανόνων ψηφοφοριών και ορίζοντας τους πιο συχνά χρησιμοποιούμενους κανόνες μαζί με μία ματιά στα γνωστά αλγοριθμικά και υπολογιστικά τους αποτελέσματα. Μιας και σε πολλές περιπτώσεις, οι ψηφοφόροι επιθυμούν να τους επιτραπεί να εκφράσουν εξαρτήσεις μεταξύ των θεμάτων, όταν καλούνται να αποφασίσουν για περισσότερα από ένα θέματα, στο τρίτο κεφάλαιο εστιάζουμε σε εκλογές συνδυαστικής φύσεως, παρουσιάζοντας ορισμένες σχετικές εφαρμογές μαζί με λύσεις που έχουν προταθεί για την αντιμετώπιση αυτών των περιστάσεων. Τέλος, στο τέταρτο κεφάλαιο, περιγράφουμε ένα μοντέλο για χειρισμό ψήφων αποδοχής υπό συνθήκες σε πολλαπλά δυαδικά ζητήματα, ακολουθούμενο από ορισμένα νέα αποτελέσματα που αφορούν κυρίως βέλτιστους και προσεγγιστικούς αλγορίθμους για τον minisum και τον minimax κανόνα.Computational Social Choice studies the aggregation of individual preferences toward a collective decision from an algorithmic point of view. Various problems in multiagent systems, decision making technologies, network design, policy making, recommendation systems and so on, require the design and theoretical evaluation of a wide range of voting rules. In the first chapter we present the origins, possible applications, some of the subtopics of Computational Social Choice as well as a historical overview of the field. In the second chapter we introduce the reader to election scenarios with more than a single winner by describing some commonly desired properties of multi-winner voting rules and defining the most widely used rules together with a glance at algorithmic and computational aspects. Since in many voting settings, voters wish to be allowed to express preferential dependencies, in the third chapter we focus on elections on combinatorial domains by presenting some specific applications along with some solutions which have been proposed in order to deal with combinatorial votes. Ultimately, in the fourth chapter we describe the recently proposed model for handling conditional approval preferences on multiple binary issues followed by new contributions which mainly concerns optimum and approximate results for minisum and minimax conditional approval voting rule

    The LDBC Financial Benchmark

    Full text link
    The Linked Data Benchmark Council's Financial Benchmark (LDBC FinBench) is a new effort that defines a graph database benchmark targeting financial scenarios such as anti-fraud and risk control. The benchmark has one workload, the Transaction Workload, currently. It captures OLTP scenario with complex, simple read queries and write queries that continuously insert or delete data in the graph. Compared to the LDBC SNB, the LDBC FinBench differs in application scenarios, data patterns, and query patterns. This document contains a detailed explanation of the data used in the LDBC FinBench, the definition of transaction workload, a detailed description for all queries, and instructions on how to use the benchmark suite.Comment: For the source code of this specification, see the ldbc_finbench_docs repository on Githu

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    JURI SAYS:An Automatic Judgement Prediction System for the European Court of Human Rights

    Get PDF
    In this paper we present the web platform JURI SAYS that automatically predicts decisions of the European Court of Human Rights based on communicated cases, which are published by the court early in the proceedings and are often available many years before the final decision is made. Our system therefore predicts future judgements of the court. The platform is available at jurisays.com and shows the predictions compared to the actual decisions of the court. It is automatically updated every month by including the prediction for the new cases. Additionally, the system highlights the sentences and paragraphs that are most important for the prediction (i.e. violation vs. no violation of human rights)

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Fatias de rede fim-a-fim : da extração de perfis de funções de rede a SLAs granulares

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Nos últimos dez anos, processos de softwarização de redes vêm sendo continuamente diversi- ficados e gradativamente incorporados em produção, principalmente através dos paradigmas de Redes Definidas por Software (ex.: regras de fluxos de rede programáveis) e Virtualização de Funções de Rede (ex.: orquestração de funções virtualizadas de rede). Embasado neste processo o conceito de network slice surge como forma de definição de caminhos de rede fim- a-fim programáveis, possivelmente sobre infrastruturas compartilhadas, contendo requisitos estritos de desempenho e dedicado a um modelo particular de negócios. Esta tese investiga a hipótese de que a desagregação de métricas de desempenho de funções virtualizadas de rede impactam e compõe critérios de alocação de network slices (i.e., diversas opções de utiliza- ção de recursos), os quais quando realizados devem ter seu gerenciamento de ciclo de vida implementado de forma transparente em correspondência ao seu caso de negócios de comu- nicação fim-a-fim. A verificação de tal assertiva se dá em três aspectos: entender os graus de liberdade nos quais métricas de desempenho de funções virtualizadas de rede podem ser expressas; métodos de racionalização da alocação de recursos por network slices e seus re- spectivos critérios; e formas transparentes de rastrear e gerenciar recursos de rede fim-a-fim entre múltiplos domínios administrativos. Para atingir estes objetivos, diversas contribuições são realizadas por esta tese, dentre elas: a construção de uma plataforma para automatização de metodologias de testes de desempenho de funções virtualizadas de redes; a elaboração de uma metodologia para análises de alocações de recursos de network slices baseada em um algoritmo classificador de aprendizado de máquinas e outro algoritmo de análise multi- critério; e a construção de um protótipo utilizando blockchain para a realização de contratos inteligentes envolvendo acordos de serviços entre domínios administrativos de rede. Por meio de experimentos e análises sugerimos que: métricas de desempenho de funções virtualizadas de rede dependem da alocação de recursos, configurações internas e estímulo de tráfego de testes; network slices podem ter suas alocações de recursos coerentemente classificadas por diferentes critérios; e acordos entre domínios administrativos podem ser realizados de forma transparente e em variadas formas de granularidade por meio de contratos inteligentes uti- lizando blockchain. Ao final deste trabalho, com base em uma ampla discussão as perguntas de pesquisa associadas à hipótese são respondidas, de forma que a avaliação da hipótese proposta seja realizada perante uma ampla visão das contribuições e trabalhos futuros desta teseAbstract: In the last ten years, network softwarisation processes have been continuously diversified and gradually incorporated into production, mainly through the paradigms of Software Defined Networks (e.g., programmable network flow rules) and Network Functions Virtualization (e.g., orchestration of virtualized network functions). Based on this process, the concept of network slice emerges as a way of defining end-to-end network programmable paths, possibly over shared network infrastructures, requiring strict performance metrics associated to a par- ticular business case. This thesis investigate the hypothesis that the disaggregation of network function performance metrics impacts and composes a network slice footprint incurring in di- verse slicing feature options, which when realized should have their Service Level Agreement (SLA) life cycle management transparently implemented in correspondence to their fulfilling end-to-end communication business case. The validation of such assertive takes place in three aspects: the degrees of freedom by which performance of virtualized network functions can be expressed; the methods of rationalizing the footprint of network slices; and transparent ways to track and manage network assets among multiple administrative domains. In order to achieve such goals, a series of contributions were achieved by this thesis, among them: the construction of a platform for automating methodologies for performance testing of virtual- ized network functions; an elaboration of a methodology for the analysis of footprint features of network slices based on a machine learning classifier algorithm and a multi-criteria analysis algorithm; and the construction of a prototype using blockchain to carry out smart contracts involving service level agreements between administrative systems. Through experiments and analysis we suggest that: performance metrics of virtualized network functions depend on the allocation of resources, internal configurations and test traffic stimulus; network slices can have their resource allocations consistently analyzed/classified by different criteria; and agree- ments between administrative domains can be performed transparently and in various forms of granularity through blockchain smart contracts. At the end of his thesis, through a wide discussion we answer all the research questions associated to the investigated hypothesis in such way its evaluation is performed in face of wide view of the contributions and future work of this thesisDoutoradoEngenharia de ComputaçãoDoutor em Engenharia ElétricaFUNCAM

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments

    Get PDF
    This thesis is concerned with investigating elements of computational social choice in the light of real-world applications. We contribute to a better understanding of the areas of fair allocation and multiwinner voting. For both areas, inspired by real-world scenarios, we propose several new notions and extensions of existing models. Then, we analyze the complexity of answering the computational questions raised by the introduced concepts. To this end, we look through the lens of parameterized complexity. We identify different parameters which describe natural features specific to the computational problems we investigate. Exploiting the parameters, we successfully develop efficient algorithms for spe- cific cases of the studied problems. We complement our analysis by showing which parameters presumably cannot be utilized for seeking efficient algorithms. Thereby, we provide comprehensive pictures of the computational complexity of the studied problems. Specifically, we concentrate on four topics that we present below, grouped by our two areas of interest. For all but one topic, we present experimental studies based on implementations of newly developed algorithms. We first focus on fair allocation of indivisible resources. In this setting, we consider a collection of indivisible resources and a group of agents. Each agent reports its utility evaluation of every resource and the task is to “fairly” allocate the resources such that each resource is allocated to at most one agent. We concentrate on the two following issues regarding this scenario. The social context in fair allocation of indivisible resources. In many fair allocation settings, it is unlikely that every agent knows all other agents. For example, consider a scenario where the agents represent employees of a large corporation. It is highly unlikely that every employee knows every other employee. Motivated by such settings, we come up with a new model of graph envy-freeness by adapting the classical envy-freeness notion to account for social relations of agents modeled as social networks. We show that if the given social network of agents is simple (for example, if it is a directed acyclic graph), then indeed we can sometimes find fair allocations efficiently. However, we contrast tractability results with showing NP-hardness for several cases, including those in which the given social network has a constant degree. Fair allocations among few agents with bounded rationality. Bounded rationality is the idea that humans, due to cognitive limitations, tend to simplify problems that they face. One of its emanations is that human agents usually tend to report simple utilities over the resources that they want to allocate; for example, agents may categorize the available resources only into two groups of desirable and undesirable ones. Applying techniques for solving integer linear programs, we show that exploiting bounded rationality leads to efficient algorithms for finding envy-free and Pareto-efficient allocations, assuming a small number of agents. Further, we demonstrate that our result actually forms a framework that can be applied to a number of different fairness concepts like envy-freeness up to one good or envy-freeness up to any good. This way, we obtain efficient algorithms for a number of fair allocation problems (assuming few agents with bounded rationality). We also empirically show that our technique is applicable in practice. Further, we study multiwinner voting, where we are given a collection of voters and their preferences over a set of candidates. The outcome of a multiwinner voting rule is a group (or a set of groups in case of ties) of candidates that reflect the voters’ preferences best according to some objective. In this context, we investigate the following themes. The robustness of election outcomes. We study how robust outcomes of multiwinner elections are against possible mistakes made by voters. Assuming that each voter casts a ballot in a form of a ranking of candidates, we represent a mistake by a swap of adjacent candidates in a ballot. We find that for rules such as SNTV, k-Approval, and k-Borda, it is computationally easy to find the minimum number of swaps resulting in a change of an outcome. This task is, however, NP-hard for STV and the Chamberlin-Courant rule. We conclude our study of robustness with experimentally studying the average number of random swaps leading to a change of an outcome for several rules. Strategic voting in multiwinner elections. We ask whether a given group of cooperating voters can manipulate an election outcome in a favorable way. We focus on the k-Approval voting rule and we show that the computational complexity of answering the posed question has a rich structure. We spot several cases for which our problem is polynomial-time solvable. However, we also identify NP-hard cases. For several of them, we show how to circumvent the hardness by fixed-parameter tractability. We also present experimental studies indicating that our algorithms are applicable in practice
    corecore