109 research outputs found

    Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?

    Full text link
    Classical interpretations of Goedel's formal reasoning imply that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is essentially unverifiable. However, a language of general, scientific, discourse cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic is verifiably complete. We show how some paradoxical concepts of Quantum mechanics can be expressed, and interpreted, naturally under a constructive definition of mathematical truth.Comment: 73 pages; this is an updated version of the NQ essay; an HTML version is available at http://alixcomsi.com/Do_Goedel_incompleteness_theorems.ht

    Etica & Politica / Ethics & Politics

    Get PDF

    Zuse's thesis, Gandy's thesis, and Penrose's thesis

    Get PDF

    Full Issue

    Get PDF

    Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT

    Full text link
    Modern computational natural philosophy conceptualizes the universe in terms of information and computation, establishing a framework for the study of cognition and intelligence. Despite some critiques, this computational perspective has significantly influenced our understanding of the natural world, leading to the development of AI systems like ChatGPT based on deep neural networks. Advancements in this domain have been facilitated by interdisciplinary research, integrating knowledge from multiple fields to simulate complex systems. Large Language Models (LLMs), such as ChatGPT, represent this approach's capabilities, utilizing reinforcement learning with human feedback (RLHF). Current research initiatives aim to integrate neural networks with symbolic computing, introducing a new generation of hybrid computational models.Comment: 17 page

    Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic

    Get PDF
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n = 3” has been known for a long time. It needs “Hilbert mathematics”, which is inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbert arithmetic” to generalize Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epochĂ© to infinity” (similar to Husserl’s “epochĂ© to reality”) is necessary to map Hilbert arithmetic into Peano arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem inferable from it

    Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930)

    Get PDF
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for granting the Gödel incompleteness statement to be a theorem just as the statement itself, to be an axiom. Then, the “completeness paper” can be interpreted as relevant to Hilbert mathematics, according to which mathematics and reality as well as arithmetic and set theory are rather entangled or complementary rather than mathematics to obey reality able only to create models of the latter. According to that, both papers (1930; 1931) can be seen as advocating Russell’s logicism or the intensional propositional logic versus both extensional arithmetic and set theory. Reconstructing history of philosophy, Aristotle’s logic and doctrine can be opposed to those of Plato or the pre-Socratic schools as establishing ontology or intensionality versus extensionality. Husserl’s phenomenology can be analogically realized including and particularly as philosophy of mathematics. One can identify propositional logic and set theory by virtue of Gödel’s completeness theorem (1930: “Satz VII”) and even both and arithmetic in the sense of the “compactness theorem” (1930: “Satz X”) therefore opposing the latter to the “incompleteness paper” (1931). An approach identifying homomorphically propositional logic and set theory as the same structure of Boolean algebra, and arithmetic as the “half” of it in a rigorous construction involving information and its unit of a bit. Propositional logic and set theory are correspondingly identified as the shared zero-order logic of the class of all first-order logics and the class at issue correspondingly. Then, quantum mechanics does not need any quantum logics, but only the relation of propositional logic, set theory, arithmetic, and information: rather a change of the attitude into more mathematical, philosophical, and speculative than physical, empirical and experimental. Hilbert’s epsilon calculus can be situated in the same framework of the relation of propositional logic and the class of all mathematical theories. The horizon of Part III investigating Hilbert mathematics (i.e. according to the Pythagorean viewpoint about the world as mathematical) versus Gödel mathematics (i.e. the usual understanding of mathematics as all mathematical models of the world external to it) is outlined
    • 

    corecore