1,226 research outputs found

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Underestimated cost of targeted attacks on complex networks

    Full text link
    The robustness of complex networks under targeted attacks is deeply connected to the resilience of complex systems, i.e., the ability to make appropriate responses to the attacks. In this article, we investigated the state-of-the-art targeted node attack algorithms and demonstrate that they become very inefficient when the cost of the attack is taken into consideration. In this paper, we made explicit assumption that the cost of removing a node is proportional to the number of adjacent links that are removed, i.e., higher degree nodes have higher cost. Finally, for the case when it is possible to attack links, we propose a simple and efficient edge removal strategy named Hierarchical Power Iterative Normalized cut (HPI-Ncut).The results on real and artificial networks show that the HPI-Ncut algorithm outperforms all the node removal and link removal attack algorithms when the cost of the attack is taken into consideration. In addition, we show that on sparse networks, the complexity of this hierarchical power iteration edge removal algorithm is only O(nlog2+ϵ(n))O(n\log^{2+\epsilon}(n)).Comment: 14 pages, 7 figure

    Postmortem Analysis of Decayed Online Social Communities: Cascade Pattern Analysis and Prediction

    Full text link
    Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members, which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity decay are not fully understood. In this work, we analyze decayed and alive sub-websites from the StackExchange platform. The analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally, we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant difference of the decay patterns between the decayed and the alive sub-websites. These patterns are mainly: cascade size, cascade virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactory prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are: (1) the decay process is not governed by only one network measure; it is better described using multiple measures; (2) the expert members of the StackExchange sub-websites were mainly responsible for the activity or inactivity of the StackExchange sub-websites; (3) the Statistics sub-website is going through decay dynamics that may lead to it becoming fully-decayed; and (4) decayed sub-websites were originally less resilient to inactivity decay, unlike the alive sub-websites

    Optimization and resilience of complex supply-demand networks

    Get PDF
    Acknowledgments This work was supported by NSF under Grant No. 1441352. SPZ and ZGH were supported by NSF of China under Grants No. 11135001 and No. 11275003. ZGH thanks Prof Liang Huang and Xin-Jian Xu for helpful discussions.Peer reviewedPublisher PD

    Control energy of complex networks towards distinct mixture states

    Get PDF
    Controlling complex networked systems is a real-world puzzle that remains largely unsolved. Despite recent progress in understanding the structural characteristics of network control energy, target state and system dynamics have not been explored. We examine how varying the final state mixture affects the control energy of canonical and conformity-incorporated dynamical systems. We find that the control energy required to drive a network to an identical final state is lower than that required to arrive a non-identical final state. We also demonstrate that it is easier to achieve full control in a conformity-based dynamical network. Finally we determine the optimal control strategy in terms of the network hierarchical structure. Our work offers a realistic understanding of the control energy within the final state mixture and sheds light on controlling complex systems.This work was funded by The National Natural Science Foundation of China (Grant Nos. 61763013, 61703159, 61403421), The Natural Science Foundation of Jiangxi Province (No. 20171BAB212017), The Measurement and Control of Aircraft at Sea Laboratory (No. FOM2016OF010), and China Scholarship Council (201708360048). The Boston University Center for Polymer Studies is supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE-1213217, and by DTRA Grant HDTRA1-14-1-0017. (61763013 - National Natural Science Foundation of China; 61703159 - National Natural Science Foundation of China; 61403421 - National Natural Science Foundation of China; 20171BAB212017 - Natural Science Foundation of Jiangxi Province; FOM2016OF010 - Measurement and Control of Aircraft at Sea Laboratory; 201708360048 - China Scholarship Council; PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - DTRA)Published versio

    An integrative quantifier of multistability in complex systems based on ecological resilience

    Get PDF
    Acknowledgements This work was supported by the German Federal Ministry of Education and Research (BMBF) via the Young Investigators Group CoSy-CC2 (grant no. 01LN1306A). C.M. acknowledges the support of Bedartha Goswami, Jobst Heitzig and Tim Kittel.Peer reviewedPublisher PD
    corecore