2,384 research outputs found

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding

    Proceedings of the 17th Annual Conference of the European Association for Machine Translation

    Get PDF
    Proceedings of the 17th Annual Conference of the European Association for Machine Translation (EAMT

    Template update algorithms and their application to face recognition systems in the deep learning era

    Get PDF
    Biometric technologies and facial recognition systems are reaching a very high diffusion for authentication in personal devices and public and private security systems, thanks to their intrinsic reliability and user-friendliness. However, although deep learning-based facial features reached a significant level of compactness and expressive power, the facial recognition performance still suffers from intra-class variations such as ageing, different facial expressions, different poses and lighting changes. In the last decade, several "adaptive" biometric systems have been proposed to deal with this problem. Unfortunately, adaptive methods usually lead to a growth of the system in terms of memory and computational complexity and involve the risk of inserting impostors among the templates. The first goal of this PhD thesis is the presentation of a novel template-based self-update algorithm, able to keep over time the expressive power of a limited set of templates. This classification-selection approach overcomes the problem of manual updating and stringent computational requirements. In the second part of the thesis, we analyzed if and to what extent this "optimized" self-updating strategy improves the facial recognition performance, especially in application contexts where the facial biometric trait undergoes great changes due to the passage of time. In contexts of long-term use, in fact, the high representativeness of the deep features may not be enough and this is usually overcome with a re-enrollment phase. For this reason, one of our goals was to evaluate how much an automatic template updating system could compete with human-in-the-loop in terms of performance. To simulate situations of long-term use in which the temporal variability of biometric data is high, we acquired a new dataset collected by using frames of some videos in YouTube related to Daily Photo Projects: people take a picture every day for a certain period of time, usually to show how their appearance is changing. The temporal information present in this new dataset allowed us to evaluate how long a facial feature can remain representative depending on the context and the recognition system. Extensive experiments on different datasets and using different facial features are conducted to define the contexts of applicability and the usefulness of adaptive systems in the deep learning era

    On the effective deployment of current machine translation technology

    Full text link
    Machine translation is a fundamental technology that is gaining more importance each day in our multilingual society. Companies and particulars are turning their attention to machine translation since it dramatically cuts down their expenses on translation and interpreting. However, the output of current machine translation systems is still far from the quality of translations generated by human experts. The overall goal of this thesis is to narrow down this quality gap by developing new methodologies and tools that improve the broader and more efficient deployment of machine translation technology. We start by proposing a new technique to improve the quality of the translations generated by fully-automatic machine translation systems. The key insight of our approach is that different translation systems, implementing different approaches and technologies, can exhibit different strengths and limitations. Therefore, a proper combination of the outputs of such different systems has the potential to produce translations of improved quality. We present minimum Bayes¿ risk system combination, an automatic approach that detects the best parts of the candidate translations and combines them to generate a consensus translation that is optimal with respect to a particular performance metric. We thoroughly describe the formalization of our approach as a weighted ensemble of probability distributions and provide efficient algorithms to obtain the optimal consensus translation according to the widespread BLEU score. Empirical results show that the proposed approach is indeed able to generate statistically better translations than the provided candidates. Compared to other state-of-the-art systems combination methods, our approach reports similar performance not requiring any additional data but the candidate translations. Then, we focus our attention on how to improve the utility of automatic translations for the end-user of the system. Since automatic translations are not perfect, a desirable feature of machine translation systems is the ability to predict at run-time the quality of the generated translations. Quality estimation is usually addressed as a regression problem where a quality score is predicted from a set of features that represents the translation. However, although the concept of translation quality is intuitively clear, there is no consensus on which are the features that actually account for it. As a consequence, quality estimation systems for machine translation have to utilize a large number of weak features to predict translation quality. This involves several learning problems related to feature collinearity and ambiguity, and due to the ¿curse¿ of dimensionality. We address these challenges by adopting a two-step training methodology. First, a dimensionality reduction method computes, from the original features, the reduced set of features that better explains translation quality. Then, a prediction model is built from this reduced set to finally predict the quality score. We study various reduction methods previously used in the literature and propose two new ones based on statistical multivariate analysis techniques. More specifically, the proposed dimensionality reduction methods are based on partial least squares regression. The results of a thorough experimentation show that the quality estimation systems estimated following the proposed two-step methodology obtain better prediction accuracy that systems estimated using all the original features. Moreover, one of the proposed dimensionality reduction methods obtained the best prediction accuracy with only a fraction of the original features. This feature reduction ratio is important because it implies a dramatic reduction of the operating times of the quality estimation system. An alternative use of current machine translation systems is to embed them within an interactive editing environment where the system and a human expert collaborate to generate error-free translations. This interactive machine translation approach have shown to reduce supervision effort of the user in comparison to the conventional decoupled post-edition approach. However, interactive machine translation considers the translation system as a passive agent in the interaction process. In other words, the system only suggests translations to the user, who then makes the necessary supervision decisions. As a result, the user is bound to exhaustively supervise every suggested translation. This passive approach ensures error-free translations but it also demands a large amount of supervision effort from the user. Finally, we study different techniques to improve the productivity of current interactive machine translation systems. Specifically, we focus on the development of alternative approaches where the system becomes an active agent in the interaction process. We propose two different active approaches. On the one hand, we describe an active interaction approach where the system informs the user about the reliability of the suggested translations. The hope is that this information may help the user to locate translation errors thus improving the overall translation productivity. We propose different scores to measure translation reliability at the word and sentence levels and study the influence of such information in the productivity of an interactive machine translation system. Empirical results show that the proposed active interaction protocol is able to achieve a large reduction in supervision effort while still generating translations of very high quality. On the other hand, we study an active learning framework for interactive machine translation. In this case, the system is not only able to inform the user of which suggested translations should be supervised, but it is also able to learn from the user-supervised translations to improve its future suggestions. We develop a value-of-information criterion to select which automatic translations undergo user supervision. However, given its high computational complexity, in practice we study different selection strategies that approximate this optimal criterion. Results of a large scale experimentation show that the proposed active learning framework is able to obtain better compromises between the quality of the generated translations and the human effort required to obtain them. Moreover, in comparison to a conventional interactive machine translation system, our proposal obtained translations of twice the quality with the same supervision effort.González Rubio, J. (2014). On the effective deployment of current machine translation technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37888TESI

    Perspectives on automated composition of workflows in the life sciences [version 1; peer review: 2 approved]

    Get PDF
    Scientific data analyses often combine several computational tools in automated pipelines, or workflows. Thousands of such workflows have been used in the life sciences, though their composition has remained a cumbersome manual process due to a lack of standards for annotation, assembly, and implementation. Recent technological advances have returned the long-standing vision of automated workflow composition into focus. This article summarizes a recent Lorentz Center workshop dedicated to automated composition of workflows in the life sciences. We survey previous initiatives to automate the composition process, and discuss the current state of the art and future perspectives. We start by drawing the “big picture” of the scientific workflow development life cycle, before surveying and discussing current methods, technologies and practices for semantic domain modelling, automation in workflow development, and workflow assessment. Finally, we derive a roadmap of individual and community-based actions to work toward the vision of automated workflow development in the forthcoming years. A central outcome of the workshop is a general description of the workflow life cycle in six stages: 1) scientific question or hypothesis, 2) conceptual workflow, 3) abstract workflow, 4) concrete workflow, 5) production workflow, and 6) scientific results. The transitions between stages are facilitated by diverse tools and methods, usually incorporating domain knowledge in some form. Formal semantic domain modelling is hard and often a bottleneck for the application of semantic technologies. However, life science communities have made considerable progress here in recent years and are continuously improving, renewing interest in the application of semantic technologies for workflow exploration, composition and instantiation. Combined with systematic benchmarking with reference data and large-scale deployment of production-stage workflows, such technologies enable a more systematic process of workflow development than we know today. We believe that this can lead to more robust, reusable, and sustainable workflows in the future.Stian Soiland-Reyes was supported by BioExcel-2 Centre of Excellence, funded by European Commission Horizon 2020 programme under European Commission contract H2020-INFRAEDI-02-2018 823830. Carole Goble was supported by EOSC-Life, funded by European Commission Horizon 2020 programme under grant agreement H2020-INFRAEOSC-2018-2 824087. We gratefully acknowledge the financial support from the Lorentz Center, ELIXIR, and the Leiden University Medical Center (LUMC) that made the workshop possible. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer Reviewed"Article signat per 33 autors/es: Anna-Lena Lamprecht , Magnus Palmblad, Jon Ison, Veit Schwämmle , Mohammad Sadnan Al Manir, Ilkay Altintas, Christopher J. O. Baker, Ammar Ben Hadj Amor, Salvador Capella-Gutierrez, Paulos Charonyktakis, Michael R. Crusoe, Yolanda Gil, Carole Goble, Timothy J. Griffin , Paul Groth , Hans Ienasescu, Pratik Jagtap, Matúš Kalaš , Vedran Kasalica, Alireza Khanteymoori , Tobias Kuhn12, Hailiang Mei, Hervé Ménager, Steffen Möller, Robin A. Richardson, Vincent Robert9, Stian Soiland-Reyes, Robert Stevens, Szoke Szaniszlo, Suzan Verberne, Aswin Verhoeven, Katherine Wolstencroft "Postprint (published version

    Coherence in Machine Translation

    Get PDF
    Coherence ensures individual sentences work together to form a meaningful document. When properly translated, a coherent document in one language should result in a coherent document in another language. In Machine Translation, however, due to reasons of modeling and computational complexity, sentences are pieced together from words or phrases based on short context windows and with no access to extra-sentential context. In this thesis I propose ways to automatically assess the coherence of machine translation output. The work is structured around three dimensions: entity-based coherence, coherence as evidenced via syntactic patterns, and coherence as evidenced via discourse relations. For the first time, I evaluate existing monolingual coherence models on this new task, identifying issues and challenges that are specific to the machine translation setting. In order to address these issues, I adapted a state-of-the-art syntax model, which also resulted in improved performance for the monolingual task. The results clearly indicate how much more difficult the new task is than the task of detecting shuffled texts. I proposed a new coherence model, exploring the crosslingual transfer of discourse relations in machine translation. This model is novel in that it measures the correctness of the discourse relation by comparison to the source text rather than to a reference translation. I identified patterns of incoherence common across different language pairs, and created a corpus of machine translated output annotated with coherence errors for evaluation purposes. I then examined lexical coherence in a multilingual context, as a preliminary study for crosslingual transfer. Finally, I determine how the new and adapted models correlate with human judgements of translation quality and suggest that improvements in general evaluation within machine translation would benefit from having a coherence component that evaluated the translation output with respect to the source text
    corecore