168 research outputs found

    How Different Electrical Circuits of ECC Designs Influence the Shape of Power Traces measured on FPGA

    Get PDF
    Side channel and fault attacks take advantage from the fact that the behavior of crypto implementations can be observed and provide hints that simplify revealing keys. These attacks use identical devices either for preparation of attacks or for measurements. By the preparation of attacks the structure and the electrical circuit of devices, that are identical to the target, is analyzed. By side channel attacks usually the same device is used many times for measurements, i.e. measurements on the identical device are made serially in time. Another way is to exploit the difference of side channel leakages; here two identical devices are used parallel, i.e. at the same time. In this paper we investigate the influence of the electrical circuit of a cryptographic implementation on the shape of the resulting power trace, because individualizing of circuits of cryptographic devices can be a new means to prevent attacks that use identical devices. We implemented three different designs that provide exactly the same cryptographic function, i.e. an ECC kP multiplication. For our evaluation we use two different FPGAs. The visualization of the routed design and measurement results show clear differences in the resources consumed as well as in the power traces

    Techniques for Aging, Soft Errors and Temperature to Increase the Reliability of Embedded On-Chip Systems

    Get PDF
    This thesis investigates the challenge of providing an abstracted, yet sufficiently accurate reliability estimation for embedded on-chip systems. In addition, it also proposes new techniques to increase the reliability of register files within processors against aging effects and soft errors. It also introduces a novel thermal measurement setup that perspicuously captures the infrared images of modern multi-core processors

    Methodology and Ecosystem for the Design of a Complex Network ASIC

    Full text link
    Performance of HPC systems has risen steadily. While the 10 Petaflop/s barrier has been breached in the year 2011 the next large step into the exascale era is expected sometime between the years 2018 and 2020. The EXTOLL project will be an integral part in this venture. Originally designed as a research project on FPGA basis it will make the transition to an ASIC to improve its already excelling performance even further. This transition poses many challenges that will be presented in this thesis. Nowadays, it is not enough to look only at single components in a system. EXTOLL is part of complex ecosystem which must be optimized overall since everything is tightly interwoven and disregarding some aspects can cause the whole system either to work with limited performance or even to fail. This thesis examines four different aspects in the design hierarchy and proposes efficient solutions or improvements for each of them. At first it takes a look at the design implementation and the differences between FPGA and ASIC design. It introduces a methodology to equip all on-chip memory with ECC logic automatically without the user’s input and in a transparent way so that the underlying code that uses the memory does not have to be changed. In the next step the floorplanning process is analyzed and an iterative solution is worked out based on physical and logical constraints of the EXTOLL design. Besides, a work flow for collaborative design is presented that allows multiple users to work on the design concurrently. The third part concentrates on the high-speed signal path from the chip to the connector and how it is affected by technological limitations. All constraints are analyzed and a package layout for the EXTOLL chip is proposed that is seen as the optimal solution. The last part develops a cost model for wafer and package level test and raises technological concerns that will affect the testing methodology. In order to run testing internally it proposes the development of a stand-alone test platform that is able to test packaged EXTOLL chips in every aspect

    Electronic systems for the restoration of the sense of touch in upper limb prosthetics

    Get PDF
    In the last few years, research on active prosthetics for upper limbs focused on improving the human functionalities and the control. New methods have been proposed for measuring the user muscle activity and translating it into the prosthesis control commands. Developing the feed-forward interface so that the prosthesis better follows the intention of the user is an important step towards improving the quality of life of people with limb amputation. However, prosthesis users can neither feel if something or someone is touching them over the prosthesis and nor perceive the temperature or roughness of objects. Prosthesis users are helped by looking at an object, but they cannot detect anything otherwise. Their sight gives them most information. Therefore, to foster the prosthesis embodiment and utility, it is necessary to have a prosthetic system that not only responds to the control signals provided by the user, but also transmits back to the user the information about the current state of the prosthesis. This thesis presents an electronic skin system to close the loop in prostheses towards the restoration of the sense of touch in prosthesis users. The proposed electronic skin system inlcudes an advanced distributed sensing (electronic skin), a system for (i) signal conditioning, (ii) data acquisition, and (iii) data processing, and a stimulation system. The idea is to integrate all these components into a myoelectric prosthesis. Embedding the electronic system and the sensing materials is a critical issue on the way of development of new prostheses. In particular, processing the data, originated from the electronic skin, into low- or high-level information is the key issue to be addressed by the embedded electronic system. Recently, it has been proved that the Machine Learning is a promising approach in processing tactile sensors information. Many studies have been shown the Machine Learning eectiveness in the classication of input touch modalities.More specically, this thesis is focused on the stimulation system, allowing the communication of a mechanical interaction from the electronic skin to prosthesis users, and the dedicated implementation of algorithms for processing tactile data originating from the electronic skin. On system level, the thesis provides design of the experimental setup, experimental protocol, and of algorithms to process tactile data. On architectural level, the thesis proposes a design ow for the implementation of digital circuits for both FPGA and integrated circuits, and techniques for the power management of embedded systems for Machine Learning algorithms

    High-performance and hardware-aware computing: proceedings of the second International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2711), San Antonio, Texas, USA, February 2011 ; (in conjunction with HPCA-17)

    Get PDF
    High-performance system architectures are increasingly exploiting heterogeneity. The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks

    Fault-tolerant satellite computing with modern semiconductors

    Get PDF
    Miniaturized satellites enable a variety space missions which were in the past infeasible, impractical or uneconomical with traditionally-designed heavier spacecraft. Especially CubeSats can be launched and manufactured rapidly at low cost from commercial components, even in academic environments. However, due to their low reliability and brief lifetime, they are usually not considered suitable for life- and safety-critical services, complex multi-phased solar-system-exploration missions, and missions with a longer duration. Commercial electronics are key to satellite miniaturization, but also responsible for their low reliability: Until 2019, there existed no reliable or fault-tolerant computer architectures suitable for very small satellites. To overcome this deficit, a novel on-board-computer architecture is described in this thesis.Robustness is assured without resorting to radiation hardening, but through software measures implemented within a robust-by-design multiprocessor-system-on-chip. This fault-tolerant architecture is component-wise simple and can dynamically adapt to changing performance requirements throughout a mission. It can support graceful aging by exploiting FPGA-reconfiguration and mixed-criticality.  Experimentally, we achieve 1.94W power consumption at 300Mhz with a Xilinx Kintex Ultrascale+ proof-of-concept, which is well within the powerbudget range of current 2U CubeSats. To our knowledge, this is the first COTS-based, reproducible on-board-computer architecture that can offer strong fault coverage even for small CubeSats.European Space AgencyComputer Systems, Imagery and Medi

    Readout Electronics for the Upgraded ITS Detector in the ALICE Experiment

    Get PDF
    ALICE is undergoing upgrades during the Long Shutdown (LS) 2 of the LHC to improve its performance and capabilities, and to prepare the experiment for the increases in luminosity provided by the LHC in Run 3 and Run 4. One of the most extensive upgrades of the experiment (and the topic of this thesis) is the replacement of the Inner Tracking System (ITS) in its entirety with a new and upgraded system. The new ITS consists exclusively of pixel sensors organized in seven cylindrical layers, and offers significantly improved tracking capabilities at higher interaction rates. And in contrast to the previous system, which would only trigger on a subset of the available events that were deemed “interesting”, the upgraded ITS will capture all events; either in a triggered mode using minimum-bias triggers, or in a “trigger-less” continuous mode where event data is continuously read out. The key component of the upgrade is a novel pixel sensor chip, the ALPIDE, which was developed at CERN specifically for the ALICE ITS upgrade. The seven layers of the ITS is assembled from sub-assemblies of sensor chips referred to as staves, and the entire detector consists of 24 120 chips in total. The staves come in three different configurations; they range from 9 chips per stave for the innermost layers, and up to 196 chips per stave in the outer layers. The number of control and data links, as well as the bit-rate of the data links, differs widely between the staves as well. Data readout from the high-speed copper links of the detector requires dedicated readout electronics in the vicinity of the detector. The core component of this system is the FPGA-based Readout Unit (RU). It facilitates the readout of the data links and transfer data to the experiment’s server farms via optical links; provides control, configuration and monitoring of the sensor chips using the same optical links, as well as over CAN-bus for redundancy; distributes trigger signals to the sensor, either by forwarding the minimum-bias triggers of the experiment, or by local generation of trigger pulses for the continuous mode. And the field-programmable devices of the RU allows for future updates and changes of functionality, which can be performed remotely via several redundant paths to the RUs. This is an important feature, since the RUs are not easily accessible when they are installed in the cavern of the experiment and will be exposed to radiation when the LHC is in operation. Radiation tolerance has been an important concern during the development of the FPGA designs, as well as the RU hardware itself, since radiation-induced errors in the RUs are expected during operation. Techniques such as Triple Modular Redundancy (TMR) were used in the FPGA designs to mitigate these effects. One example is the radiation tolerant CAN controller design which is introduced in this thesis. A different challenge, which is also addressed in this thesis, is the monitoring of internal status and quantities such as temperature and voltage in the ALPIDE chips. This is performed over the ALPIDE’s control bus, but must be carefully coordinated as the control bus is also used for triggers. The detector and readout electronics are designed to operate under a wide set of conditions. Considering events from Pb–Pb collisions, which may have thousands of pixel hits in the detector, a typical pp event has comparatively few pixel hits, but the collision rate is significantly higher for pp runs than it is for Pb–Pb runs. And the detector can be used with two triggering modes, where the continuous trigger mode has additional parameters for trigger period. A simulation model of the ALPIDE and ITS, presented in this thesis, was developed to simulate the readout performance and efficiency of the detector under a wide set of circumstances. The simulated results show that the detector should perform with a high efficiency at the collision rates that are planned for Run 3. Initial plans for a dedicated hardware, to handle and coordinate busy status for the detector, was deemed superfluous and the plans were canceled based on these results. Collision rates higher than those planned for Run 3 were also simulated to yield parameters for optimal performance at those rates. For the RU, which was designed to interface to three widely different stave designs, the simulations quantified the amount of data the readout electronics will have to handle depending on the detector layer and operating conditions. Furthermore, the simulation model was adapted for simulations of two other ALPIDE-based detector projects; the Proton CT (pCT) project at University of Bergen (UiB), a Digital Tracking Calorimeter (DTC) used for dose planning of particle therapy in cancer treatment; and the planned Forward Calorimeter (FoCal) for ALICE, where there will be two layers of pixel sensors among the 18 layers of Si-W calorimeter pads in the electromagnetic part of the detector (FoCal-E). Since the size of a calorimeter pad is relatively large, around 1 cm², the fine grained pixels of the ALPIDE (29.24 µm × 26.88 µm) will help distinguish between multiple showers and improve the overall spatial resolution of the detector. The simulations helped prove the feasibility of the ALPIDE for this detector, from a readout perspective, and FoCal was later approved by the LHCC committee at CERN.Doktorgradsavhandlin

    Technical Design Report for the PANDA Micro Vertex Detector

    Get PDF
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined
    corecore